
Cost Partitioning for Multiple Sequence Alignment

Mika Skjelnes, Daniel Gnad, Jendrik Seipp
Linköping University, Sweden

firstname.lastname@liu.se

Abstract

Multiple Sequence Alignment (MSA) is a fundamental prob-
lem in computational biology that is used to understand the
evolutionary history of protein, DNA, or RNA sequences. An
optimal alignment for two sequences can efficiently be found
using dynamic programming, but computing optimal align-
ments for more sequences continues to be a hard problem. A
common method to solve MSA problems is A∗ search with
admissible heuristics, computed from subsets of the input se-
quences. In this paper, we consider MSA from the perspective
of cost partitioning and relate the existing heuristics for MSA
to uniform cost partitioning and post-hoc optimization, two
well-known techniques from the automated planning litera-
ture. We show that the MSA heuristics are bounded by uni-
form cost partitioning and that post-hoc optimization yields
strictly dominating heuristics. For a common benchmark set
of protein sequences and a set of DNA sequences, we show
that the theoretical dominance relations between the heuris-
tics carry over to practical instances.

Introduction
The Multiple Sequence Alignment (MSA) problem is the
task of optimally aligning a set of character sequences based
on a pairwise character alignment cost (Kobayashi and Imai
1998). An alignment is a modification of the sequences
where gaps are inserted into a sequence to offset its tail, so
that all sequences have the same length. The cost of an align-
ment is computed by summing up the individual character
alignment costs across the characters at the same index over
all sequence pairs. See Figure 1 for an example. MSA is a
central problem in molecular biology, and is relevant, among
others, for research of relationships in protein structure and
evolutionary studies (Carrillo and Lipman 1988).

MSA can be solved optimally with dynamic programming
(Needleman and Wunsch 1970), but this method becomes
impractical as the number of sequences grows. Hence, a typ-
ical approach to solve MSA is based on solving selected
sub-problems with dynamic programming, and combining
the solutions of these sub-problems to form an admissible
heuristic (Pearl 1984). This heuristic is then used to guide
an A∗ search (Hart, Nilsson, and Raphael 1968) for solv-
ing the full problem. Since their introduction in 1998, the
strongest admissible heuristics for MSA are hall,k and hone,k

(Kobayashi and Imai 1998). They both dominate the hpair

S

s1: T T A
s2: G C
s3: A C

A

A1: T T – A
A2: – G – C
A3: A – C –

Figure 1: Three sequences S and an alignment A thereof.

heuristic (Ikeda and Imai 1994) which sums over all pair-
wise alignment costs.

We build upon previous research (Riesterer 2018) on re-
lating the hall,k and hone,k heuristics to the concept of cost
partitioning. Cost partitioning (CP) is the state-of-the-art
approach in optimal classical planning to combine heuris-
tics admissibly (Yang et al. 2008; Katz and Domshlak 2010;
Pommerening et al. 2015; Franco et al. 2017; Seipp, Keller,
and Helmert 2020). By distributing the cost of each ac-
tion across the heuristics, we can sum the heuristic esti-
mates while guaranteeing admissibility. Cost partitioning
has been studied extensively, and various methods have
been developed for partitioning action costs (Haslum, Bonet,
and Geffner 2005; Haslum et al. 2007; Katz and Domsh-
lak 2008; Karpas and Domshlak 2009; Katz and Domshlak
2010; Pommerening, Röger, and Helmert 2013; Seipp and
Helmert 2014; Seipp, Keller, and Helmert 2017, 2021). For
some of these methods, dominance relationships have been
established, i.e., theoretical guarantees that one method will
always yield an overall heuristic value at least as high as the
one of the other, when applied to the same set of heuristics
(Seipp, Keller, and Helmert 2017).

In this work, we view MSA problems as shortest-path
searches in transition systems. We establish a formal con-
nection between hall,k and hone,k to cost partitioning over
a collection of abstraction heuristics (Katz and Domshlak
2010; Pommerening, Röger, and Helmert 2013). Concretely,
we show that, when using the same collection of heuristics,
hall,k and hone,k are dominated by uniform cost partition-
ing (UCP) (Katz and Domshlak 2010), which gives an equal
share of the cost of each action to every heuristic it con-
tributes to. For post-hoc optimization (PhO) (Pommerening,
Röger, and Helmert 2013), which maximizes the sum over
the heuristics by computing the weight of each heuristic us-
ing linear programming, we get the stronger result that it
even strictly dominates hall,k. This still ignores the fact that

both cost-partitioning approaches are capable of handling ar-
bitrary collections of heuristics, in contrast to the established
MSA heuristics hall,k and hone,k, which work on a fixed col-
lection.

We evaluate the new post-hoc optimization heuristic on
a core bio-informatics benchmark set of protein sequences
called BAliBase (Thompson, Plewniak, and Poch 1999),
as well as a set of randomly generated DNA sequences.
Our results confirm empirically that cost partitioning is in-
deed promising for MSA, with post-hoc optimization yield-
ing higher heuristic values than the previous state-of-the-art
heuristics.

Multiple Sequence Alignment
Given a set of sequences S = {s1, . . . , sn} over some al-
phabet Σ, an alignment of S is a matrix An×m over alphabet
Σ′ = Σ ∪ {–}, such that the following conditions hold: (1)
m ≥ maxsi∈S |si|, (2) no column j consists of only the gap
character “–”, and (3) removing all gap occurrences from
any row i in A yields the original sequence si. The cost
of an alignment is the summed pairwise substitution cost
sub : Σ′ × Σ′ → N+

0 of each two characters per column
in the alignment across all columns. The concrete substitu-
tion cost function is problem-specific, and can be based on
biological knowledge or empirical data.
Example 1. Given sequences S = {s1, s2, s3} where s1 =
TTA, s2 = GC, s3 = AC, we can construct an alignment A
with rows A1 = TT--A, A2 = --G--C, A3 = A--C--,
visualized in Figure 1. We will use S and A as our running
example.

Formally, the alignment costs of two rows of an align-
ment, respectively the full alignment, are defined as follows.
Definition 1 (Pair Score). Let si, sj ∈ S, with i ̸= j, be two
sequences over alphabet Σ, and A an alignment of S. Then
the pair score of si and sj in A is

C(A, i, j) =

m∑
k=1

sub(aik, ajk).

Definition 2 (Alignment Score). The alignment score, or
sum of pairs score of alignment A is

C(A) =
∑

1≤i<j≤n

C(A, i, j).

We also define a score function for an alignment column.
Definition 3 (Column Score). The column score of a column
C of alignment A is defined as

C(C) =
∑

1≤i<j≤n

sub(Ci, Cj).

The goal of MSA is to find an optimal alignment A, i.e.,
one where for all alignments A′ : C(A) ≤ C(A′).
Example 2. Consider sequences S, and alignment A
from the running example. The pair score of A1 and A2

is C(A, 1, 2) = sub(T,−) + sub(T,G) + sub(−,−) +
sub(A,C). The alignment score of A is C(A, 1, 2) +
C(A, 1, 3) + C(A, 2, 3).

MSA as Shortest-Path Search
Previous work has already discussed that an MSA task can
be seen as a shortest-path search problem in a weighted tran-
sition system (e.g., Kobayashi and Imai 1998). However, this
connection has so far been left implicit in the literature. We
make this perspective explicit by defining the transition sys-
tem for an MSA task and showing how the cost of a path
in this transition system corresponds to the cost of an align-
ment. Figure 2 visualizes the transition system for the run-
ning example.

Figure 2: Transition system for the running example, where
three sequences of length 3 (x axis), 2 (y axis) and 2 (z axis)
need to be aligned. A shortest path from the initial state in
the front top left to the goal state at the back lower right de-
fines an MSA. To avoid clutter, we omit a significant num-
ber of transitions. For the top left and bottom right cube,
we show all transitions. Dashed transitions make progress in
more than one sequence at a time.

Definition 4 (Transition System). A transition system T is
a directed labeled graph defined by finite set of states S(T),
a finite set of labels L(T), a set T (T) of labeled transitions

s
ℓ−→ s′ with s, s′ ∈ S(T) and ℓ ∈ L(T), an initial state

s0(T), and a set S∗(T) of goal states.

For an MSA task with n sequences s1, . . . sn, we obtain
the corresponding transition system T as follows. The states
S(T) are the vertices in an n-dimensional lattice graph G of
size |s1+1|× · · ·× |sn+1|. The initial state s0(T) is at the
origin ⟨0, . . . , 0⟩, and the single goal state s∗ is at coordinate
⟨|s1|, . . . , |sn|⟩.

There is a transition s
ℓ−→ s′ between state s =

⟨x1, x2, . . . , xn⟩ and state s′ = ⟨x′
1, x

′
2, . . . , x

′
n⟩ if, and

only if, between the two states there is at most a single
step of progress in every dimension, and at least one step
of progress in one dimension. Formally, this is the case if
0 ≤ x′

i−xi ≤ 1 for all i = 1 . . . n, and
∑n

i=1(x
′
i−xi) > 0.

In transition systems for other search tasks, each transi-
tion is directly labeled with the cost of taking that transition,
or with an action label that indirectly defines the cost. For

s4

s3ℓ
=

{
C

1 ,C
2 ,C

3 }

s2

s1
s3

{
C

1 ,C
2 }

s2

s1

Figure 3: Cost component decomposition of label ℓ in the
transition system of the full task (left), and a transition sys-
tem TP1 for pattern P1 = {s1, s2, s3} (right).

MSA tasks, however, the definition of alignment costs re-
quires us to associate each transition label with a set of cost
components.
Definition 5 (Cost Components). Let si and sj be two
sequences in an MSA task. Then the cost component
Ci,j

⟨x,y⟩→⟨x′,y′⟩ is the cost of the interaction between se-
quences si and sj from positions ⟨x, y⟩ to ⟨x′, y′⟩, where
0 ≤ x ≤ x′ ≤ |si| and 0 ≤ y ≤ y′ ≤ |sj |.

Using this definition, we label each transition t ∈ T (T)
with the set of cost components relevant for t. This corre-
sponds to associating each transition t with the set of substi-
tution costs for the corresponding column of the alignment.
Definition 6 (Paths and Goal Paths). Let T be a transition
system. A path from s ∈ S(T) to s′ ∈ S(T) is a sequence

of transitions from T (T) of the form π = ⟨s0 ℓ1−→ s1, s1
ℓ2−→

s2, . . . , sn−1 ℓn−→ sn⟩, where s0 = s and sn = s′. A path is
a goal path if s0 = s0 and sn is a goal state of T .

Intuitively, each goal path in the transition system is an
alignment. Each step in the goal path corresponds to one col-
umn in the final alignment matrix. As such, each step makes
progress on a subset S′ ⊆ S by aligning the characters at
their current positions. For the remaining sequences, the step
inserts a gap in the corresponding column of the alignment.
The cost of each transition is the column score of the column
formed by the transition, or equivalently, the sum of the cost
components of the transition.
Example 3. Consider sequences S = {s1, . . . , s4} (not
the running example), transition system T induced by the
MSA task of aligning S, and transition t = ⟨0, 0, 0, 0⟩ →
⟨0, 1, 0, 0⟩ ∈ T (T). Then t is labeled with the set of cost
components ℓ = {C1, C2, C3}, where C1 = C1,2

⟨0,0⟩→⟨0,0⟩,

C2 = C2,3
⟨0,0⟩→⟨1,0⟩ and C3 = C2,4

⟨0,0⟩→⟨1,0⟩. Figure 3 vi-
sualizes the cost components of t in T , and in the transi-
tion system T{s1,s2,s3} induced by the MSA task of aligning
{s1, s2, s3}. Figure 4 visualizes the cost decomposition of ℓ
in T{s1,s2}, T{s2,s3}, and T{s2,s4}.

Definition 7 (Cost Functions). A cost function for transition
system T is a function cost : L(T) → R+

0 . In the case

C1s2

s1

C2s2

s3

C3s2

s4

Figure 4: Transition systems TP2
, TP3

, TP4
for patterns P3 =

{s1, s2}, P3 = {s2, s3}, P4 = {s2, s4}, respectively. The
label for the (red) transition is decomposed to a single cost
component in each transition system here.

of MSA transition systems, where each transition is labeled
with a set of cost components, the cost of a transition t is the
sum of its cost components. The cost of a path π in T is the
sum of the cost of its transitions.

A cheapest goal path π in T defines an MSA solution and
we use h∗

T (s0(T)) to refer to its cost. Each transition ti ∈ π
corresponds to column Ci in the resulting alignment A.

Example 4. Consider sequences S and alignment A from
the running example. Aligning the first character of se-
quence s1 with the first character of sequence s3, and insert-
ing a gap for sequence s2, results in the first column of align-
ment A. This corresponds to taking the transition ⟨0, 0, 0⟩ →
⟨1, 0, 1⟩ in the induced transition system. The cost of this
transition is the column score of col, which is the first column
⟨T-A⟩ of A: C(col) = sub(T,−) + sub(T,A) + sub(−, A).

Pattern Database Heuristics for MSA
Now, we can solve MSA by finding a cheapest goal path π in
the induced transition system T . In principle, one could use
uninformed search algorithms like uniform cost search to
find cheapest paths. However, the enormous size of T , which
has

∏
s∈S(|s|+1) states for sequences S, makes such blind

approaches infeasible for realistic MSA tasks. Instead, we
turn to heuristic search and use A∗ to explore the state space
guided by an admissible heuristic. This approach guarantees
that the found paths are optimal.

The most prominent way of obtaining an admissible
heuristic for MSA transition system T is to select a sub-
set of sequences P ⊆ S such that the transition system T ′

for aligning P is small enough to be explored exhaustively
(Kobayashi and Imai 1998). This approach is closely re-
lated to the concept of abstraction and projection in heuris-
tic search (Felner, Korf, and Hanan 2004). More precisely,
each subset P can be seen as a pattern and aligning the se-
quences in the pattern is similar to finding a shortest path
in the MSA transition system projected to the dimensions
present in P . Computing the costs of optimal goal paths in
such a projection gives rise to a pattern database heuristic,
which are widely used in heuristic search (Culberson and
Schaeffer 1998; Edelkamp 2001). However, due to the way
costs are defined for MSA, we cannot define MSA projec-
tions by homomorphic abstraction as is common for heuris-
tic search tasks (Seipp and Helmert 2018). Instead, we define
the projection to P as the transition system that we obtain for
the sequences P . This is identical to removing all cost com-

11

10

9

8

7

6

5

4

3

6

3

0

G

T

3

3

6

T

3

3

6

A

3

3

2

C 3

3

4
3

3

4
3

3

4

3 3 3

3

3

Figure 5: Abstract transition system, of the full transition
system in Figure 2, induced by the task of aligning se-
quences s1 and s2 in the running example. For each abstract
state, we show its optimal goal distance.

ponents that involve sequences not in P when we project the
full MSA lattice to the dimensions in P .

Definition 8 (Pattern Database Heuristics for MSA). Let
P = {s1, . . . , sk} ⊆ S be a subset of sequences in an MSA
task. Then we call P a pattern and let the projection TP refer
to the MSA transition system for aligning P . For a state s,
we define hP (s) as the cost of a cheapest goal path in TP
starting in state s|P , where s|P is obtained by projecting s

to the sequences in P . Where convenient, we write hP (s) as
hs1,...,sk(s).

Example 5. In our running example, consider the subprob-
lem of aligning P = {s1, s2}. Figure 5 shows the induced
transition system TP for this abstraction and the goal dis-
tance of each abstract state in TP . For example, for the ini-
tial state s0 of the full task, the heuristic estimate we obtain
from TP is hs1,s2(s0) = h∗

T ′(s0|P) = 11.

Instead of using a single pattern database heuristic, we
can combine multiple heuristics to obtain a more informed
estimate. This is also done by the two state-of-the-art MSA
heuristics hall,k and hone,k. They both select sequence sub-
sets and compute heuristics over the induced abstractions
(Kobayashi and Imai 1998). As such, they can be seen as
examples for pattern database heuristics. The hall,k heuris-
tic computes the sum of abstract goal distances obtained
from all k-fold patterns. To ensure admissibility, the sum
is divided by the number of k-fold patterns in which two
sequences si, sj appear together, which amounts to

(
n−2
k−2

)
patterns.

Definition 9 (hall,k). Given an MSA task with n sequences
S = {s1, . . . , sn} and a natural number k such that 2 ≤
k ≤ n, the hall,k heuristic is defined as

hall,k(s) =
1(

n−2
k−2

) ∑
1≤x1<···<xk≤n

hsx1
,...,sxk (s).

Computing all k-folds can however be too computation-
ally demanding. The hone,k heuristic can be faster to com-
pute than hall,k, as it only solves two larger subproblems
hsx1

,...,sxk and hsxk+1
,...,sxn , in addition to all pair patterns

obtained by taking exactly one sequence from each of the
two larger subproblems.

Definition 10 (hone,k). Given an MSA task with n sequences
S = {s1, . . . , sn}, a natural number k such that 2 ≤ k ≤ n,
a k-fold pattern P1 = {sx1 , . . . sxk

} and an (n − k)-fold
pattern P2 = {sxk+1

, . . . sxn
} so that P1 ∪ P2 = S and

P1 ∩ P2 = ∅, the hone,k heuristic is defined as

hone,k(s) = hsx1
,...,sxk +hsxk+1

,...,sxn +

k∑
i=1

n∑
j=k+1

hsxi
,sxj .

Since hone,k only considers collections of pattern database
heuristics whose sum is admissible (Kobayashi and Imai
1998), scaling the estimate is unnecessary.

Cost Partitioning
Cost Partitioning is a prominent technique from the classi-
cal planning and heuristic search literature, which allows
to sum heuristic estimates while preserving admissibility
(Yang et al. 2008; Katz and Domshlak 2010). A cost par-
titioning distributes the cost of each action among the com-
ponent heuristics, such that the sum of costs per action is not
greater than the original cost.

Definition 11 (Cost Partitioning). Given a tuple of n heuris-
tics H = ⟨h1, . . . , hn⟩ for transition system T with la-
bels L(T), and cost function c, the cost functions C =
⟨c1, . . . , cn⟩ form a cost partitioning for H if

∑n
i=1 ci(ℓ) ≤

c(ℓ) for all ℓ ∈ L(T). The resulting cost-partitioned heuris-
tic is hC(s) =

∑n
i=1 hi(ci, s), where hi(ci, s) is the heuris-

tic value of hi for s evaluated under cost function ci.

Computing an optimal cost partitioning (Katz and
Domshlak 2010; Pommerening et al. 2021) over abstrac-
tion heuristics is possible in polynomial time, but still usu-
ally prohibitively expensive in practice (Seipp, Keller, and
Helmert 2020). Instead, we turn to computationally less de-
manding algorithms for computing cost partitionings, which
we introduce next. In the definitions below, we say that a
label ℓ is used by an abstraction heuristic hi if ℓ induces a
state-changing transition in Ti, the transition system under-
lying hi.

Uniform Cost Partitioning A uniform cost partitioning
(UCP) distributes the cost of each label ℓ evenly among all
heuristics that use ℓ (Katz and Domshlak 2010). Formally,
cost function ci for heuristic hi is defined as

ci(ℓ) =

{
c(ℓ)

|{h∈H|h uses ℓ}| if hi uses ℓ
0 otherwise.

We refer to the resulting uniform cost-partitioned heuristic
as hUCP.

Post-Hoc Optimization Post-hoc optimization (PhO)
(Pommerening, Röger, and Helmert 2013; Seipp, Keller, and
Helmert 2021) uses a linear program (LP) to compute a
weight wi for each heuristic hi ∈ H such that the weighted

sum of heuristic estimates remains admissible:

hPhO(s) = maximize
n∑

i=1

wi · hi(s) s.t.∑
hi∈H:hi uses ℓ

wi ≤ 1 for all ℓ ∈ L(T)

wi ≥ 0 for all hi ∈ H.

The resulting post-hoc optimization cost partitioning is the
tuple C = ⟨w1 · c1, . . . , wn · cn⟩, where ci(ℓ) = c(ℓ) if hi

uses ℓ and ci(ℓ) = 0 otherwise.
Definition 12 (Dominance). Heuristic h dominates heuris-
tic h′ if h(s) ≥ h′(s) for all states s ∈ S(T). The domi-
nance is strict if there is a state s such that h(s) > h′(s).

There is no dominance relation between hUCP and hPhO,
i.e., there are example transition systems T and states s, s′ ∈
S(T), where hUCP(s) > hPhO(s) and hPhO(s) > hUCP(s).
Below, we will establish equality and dominance relations
between the MSA heuristics and cost-partitioned heuristics.

Additive MSA Abstractions
The notion of cost components allows us to identify how
different projections share costs on their labels. We will next
show that this is essential to reason about admissibility of
the sum over pattern database heuristics. When summing up
costs across several projections we can connect the occur-
rence of cost components directly to admissibility: if a cost
component C appears in at most one projection P ∈ P , then
the respective heuristics are additive, i.e. their sum is admis-
sible.
Definition 13 (Additive Pattern Collection). A collection of
pattern database heuristics P is additive iff for all states s ∈
S(T) : hP(s) :=

∑
P∈P hP (s) ≤ h∗

T (s).
First, we prove that every cost component can appear at

most once along every solution.
Proposition 1. Let T be the transition system induced by a
MSA task and π a goal path of T . Then every cost compo-
nent C is part of at most one transition label in π.

Proof. Without loss of generality, let C = Ci,j
⟨x,y⟩→⟨x′,y′⟩

be contained in a label for transition t in π. By definition,
every cost component labels a transition t′ in T that starts at
coordinate ⟨x, y⟩ and ends in ⟨x′, y′⟩, where x′ > x∨y′ > y,
affecting dimensions i and j. Since every T induced by a
MSA task is acyclic, the progress made from x to x′ (resp. y
to y′) cannot be undone, so C cannot appear again on π.

With this, across the solutions of a set of transition sys-
tems TP , we know that if a cost component C appears more
than once, then its cost is over-counted when combining the
solutions, i.e. when summing up the heuristics. Thus, if ev-
ery cost component appears only on labels of a single pattern
database heuristic from a collection P , then the collection is
additive.
Proposition 2. Let P be a pattern collection. If for every
cost component C there exists at most one pattern P ∈ P
such that C appears in the induced transition systems TP ,
then P is additive.

Proof. Let πP denote a solution for TP of a pattern P ∈ P .
Then, because every cost component C appears in at most
one projection P , the set of solutions {πP | P ∈ P ′} of
any subset P ′ ⊆ P consider C no more than once. Hence,
the heuristic values hP for all P ∈ P ′ can be summed up,
leading to an admissible heuristic.

A pattern collection that uses patterns with cost compo-
nents in common is not necessarily additive by itself, but a
heuristic that scales the contribution of the patterns appropri-
ately is admissible. To elaborate this further we need some
additional definitions.

Definition 14. Two patterns P1 and P2 conflict if there is a
cost component C that exists in both TP1

and TP2
.

We will use the notion of conflicts to argue why pattern
collections are additive. We do so by reasoning about se-
quences that are shared between patterns, which is simpler
than reasoning about the occurrence of cost components.

Proposition 3. P1 and P2 conflict iff |P1 ∩ P2| ≥ 2.

Proof. If |P1 ∩ P2| ≥ 2, then P1 and P2 have at least two
sequences s1 and s2 in common. Thus, there exist cost com-
ponents of the form C1,2

⟨x,y⟩→⟨x′y′⟩ that label transitions in
both projections, so P1 and P2 are in conflict. For the other
direction, observe that if there exists a cost component C
that appears in both TP1 and TP2 , then by definition these
two patterns have at least two sequences in common.

We extend the notion of conflicts to pattern collections.

Definition 15. A pattern collection P is conflicting if there
exist two patterns Pi, Pj ∈ P that conflict, with Pi ̸= Pj .

With this we have a criterion for admissibility based on
conflicts.

Proposition 4. Let P be a pattern collection. If P is not
conflicting, then hP is admissible.

Proof. As P is not conflicting, no cost component C ex-
ists in more than one projection TPi

induced by the patterns
Pi ∈ P . Thus, over all solutions πi for all TPi

, each cost
component is counted at most once.

We also introduce a notion for when all patterns in the
pattern collection have two sequences in common.

Definition 16 (Strictly conflicting MSA pattern collections).
Let P be a pattern collection. P is strictly conflicting iff
|
⋂

P∈P P | ≥ 2.

This allows us to consider minimal pattern sub-sets P ′ ⊆
P that all share at least two sequences, which relates to the
number of shared occurrences of cost components.

Uniform Cost Partitioning over MSA
Abstractions

We redefine the UCP algorithm to a version for MSA ab-
stractions.

Definition 17. (MSA UCP) The MSA UCP algorithm
distributes each cost component C over patterns P =
{P1, . . . , Pn} by using the fractional cost components
wP1

(C), . . . , wPn
(C) instead, where

wP (C) =

{
1

|{P∈P|C exists in TP }| if C exists in TP
0 otherwise.

The resulting MSA UCP heuristic is defined as

hP
UCP(s) =

∑
P∈P

hP ′
(s|P),

where hP ′
is the heuristic for pattern P , but where the un-

derlying transition system TP has its label costs recomputed
to use cost wP (C) for each cost component C.

Theorem 5. hP
UCP is admissible.

Proof. For the given pattern collection P = {P1, . . . , Pn},
each cost component C is distributed over pat-
terns P1, . . . Pn as wP1(C), . . . , wPn(C), so that∑

i=1,...,n wPi(C) = 1. Since any solution for every
projection TPi uses C at most once (Proposition 1), C never
contributes more than its original costs.

From now on, we use the notation hall,k
UCP and hone,k

UCP to re-
fer to hP

UCP where the pattern collection P corresponds to
the patterns considered by the hall,k and hone,k heuristics,
respectively. We will use the same notation for hP

PhO, intro-
duced below.

We now show that hP
UCP is equal to hall,k and hone,k, for a

suitable choice of patterns.

Proposition 6. hone,k
UCP = hone,k

Proof. Given sequences S = s1, . . . , sn, some value 2 ≥
k ≥ n, and a pattern collection P consisting of P1 ⊆ S
where |P1| = 2, P2 = S/P1, and all patterns in P ′ =⋃

si∈P1,sj∈P2
{si, sj}, we have that for every cost compo-

nent C, it exists in at most one pattern P of P because P is
non-conflicting. Consequentially, the contribution for C is 1,
leading to the full heuristic value per pattern, which is equal
to hone,k.

Proposition 7. hall,k
UCP = hall,k

Proof. Given sequences S = s1, . . . , sn, some value 2 ≥
k ≥ n, and any state s, then we have a pattern collection P
of all k-folds. Each cost component of the form Ci,j where
1 ≥ i < j ≥ n then exist in exactly

(
n−2
k−2

)
patterns. As

a result, every cost component in each pattern Pi where
i = 1, . . .

(
n
k

)
will contribute 1

(n−2
k−2)

of its associated cost,

therefore we can rewrite the heuristic value per pattern as
hPi (s)

(n−2
k−2)

. The heuristic value hall,k
UCP(s) is then

(nk)∑
i=1

hPi(s)(
n−2
k−2

) =
1(

n−2
k−2

) (nk)∑
i=1

hPi(s) = hall,k(s).

Post-hoc Optimization over MSA Abstractions
We define the MSA PhO LP for a given pattern collection
P = {P1, . . . , Pn} and state s:

hP
PhO(s) = maximize

n∑
i=1

wi · hPi(s) s.t.∑
Pi∈P′

wi ≤ 1 for all strictly conflicting P ′ ⊆ P

wi ≥ 0 for all Pi ∈ P.

Theorem 8. hP
PhO is admissible.

Proof. Each cost component C exists in all patterns Pi of
a strictly conflicting pattern collection P and C does not
exist in any pattern from P \ P ′. Since

∑
Pi∈P′ wi ≤ 1, we

therefore also get
∑

Pi∈P wi(C) ≤ 1. Consequentially, the
constraints of the MSA PhO LP ensure that the contribution
of each cost component C does not exceed its original cost.

We now have the tools to formally relate the hall,k heuris-
tic to post-hoc optimization. We start by proving that hall,k

is a cost partitioning heuristic, and that it is dominated by
post-hoc optimization.

Theorem 9. hall,k
PhO dominates hall,k.

Proof. Consider the pattern collection P = {P1, . . . , P(nk)
}

consisting of all
(
n
k

)
k-fold patterns from a set of n se-

quences S. Then we can compute hall,k(s) for a state s as

hall,k(s) =

∑(nk)
i=1 h

Pi(s)(
n−2
k−2

) =

(nk)∑
i=1

1(
n−2
k−2

)hPi(s)

by using the definition of hall,k and simple arithmetic. Af-
ter setting wi =

1

(n−2
k−2)

, it becomes apparent that the result,

hall,k(s) =
∑(nk)

i=1 wi · hPi(s) is a valid solution to the MSA
PhO LP. To see that hall,k(s) satisfies both LP constraints,
observe that

(i) Each pair of sequences appears in exactly
(
n−2
k−2

)
patterns.

Therefore, the number of strictly conflicting patterns for
each sequence is

(
n−2
k−2

)
and we have

∑
Pi∈P′ wi =(

n−2
k−2

)
1

(n−2
k−2)

= 1, and

(ii) 0 <
(
n−2
k−2

)
⇒ 1

(n−2
k−2)

≥ 0

By the above observations we conclude that the factor 1

(n−2
k−2)

is a valid value for all wi.

There are even states in MSA tasks where hall,k
PhO is strictly

more accurate than hall,k.

Proposition 10. The dominance relation between hall,k
PhO and

hall,k is strict.

101 102 103
1

1.02

1.04

1.06

1.08

hall,3 (higher for 0 tasks)

h
al

l,
3

Ph
O

(h
ig

he
rf

or
29

6
ta

sk
s) h(s0)

Figure 6: Per-instance ratio of initial-state heuristic value of
hall,3

PhO over hall,k, as a function of the absolute value of hall,k.

101 102 103
1

1.02

1.04

1.06

1.08

hall,3 (higher for 0 tasks)

h
al

l,2
+3

Ph
O

(h
ig

he
rf

or
42

2
ta

sk
s) h(s0)

Figure 7: Per-instance ratio of initial-state heuristic value of
hall,2+3

PhO over hall,k, as a function of the absolute value of hall,k.

Proof. Consider the following MSA task with five se-
quences and the pattern collection consisting of all

(
5
3

)
=

10 3-folds P = {P1, . . . , P10}. Let the 10 heuristic esti-
mates for state s be ⟨12, 12, 12, 6, 10, 10, 6, 10, 10, 4⟩. Then
hall,k(s) = 12+12+12+6+10+10+6+10+10+4

3 = 92
3 < 32 =

(12 · 0.5 + 12 · 0.5 + 12 · 0 + 6 · 0 + 10 · 0.5 + 10 · 0.5 + 6 ·
0 + 10 · 0.5 + 10 · 0.5 + 4 · 0) = hPhO(s).1

In experiments we verify that this strict relationship holds
for BaliBase tasks. Next, we observe that MSA PhO is com-
parable to hone,k.

Theorem 11. hone,k
PhO = hone,k.

Proof. The pattern collection P is non-conflicting, there-
fore the optimal solution to the LP will set wi = 1 for
i = 1, . . . , n. Thus the heuristic value will be equal to that
of hone,k.

Experiments
We integrated our new cost-partitioning heuristics into
MSASolver,2 a specialized Java implementation of A∗

1This is the smallest BAliBase benchmark instance we could
find to show this strict dominance.

2MSASolver is available at https://github.com/matthatem/
MSASolverhttps://github.com/matthatem/MSASolver.

search for MSA problems that includes heuristics such as
hall,k and hone,k. We extend the code from Riesterer (2018),
which integrated post-hoc optimization into MSASolver.
Our main goal for the evaluation is to confirm our theo-
retical results on the dominance of post-hoc optimization
over hall,k. Hence, we focus on initial-state heuristic values
throughout our analysis. To conduct the experiments, we use
the Lab Python package (Seipp et al. 2017). Each task is run
on an AMD Ryzen 7 PRO 5850U CPU, with 30 minute run-
time and 20 GiB memory limits. We evaluate both heuristics
on two benchmark sets, which we describe next.

BAliBase
The BAliBase benchmark collection contains multiple sets
of instances of protein sequences (Thompson, Plewniak, and
Poch 1999). We use the full benchmark set consisting of 898
instances, each with 4–419 sequences and up to 1382 char-
acters. In our evaluation, we obtained results for all instances
with at most six sequences, which is a general restriction of
MSASolver. Out of the full benchmark set, 128 instances
satisfy this condition.

Random DNA Sequences
We increase the size of our benchmark set to enable a more
systematic evaluation by generating 900 instances consist-
ing of random DNA sequences. These contain the nucleotide
characters A,C,G and T. For every number of 4–6 sequences
and lengths from 1–100 characters, we generate three ran-
dom character sequences. Besides increasing the size of our
benchmark set, the pairwise substitution costs in DNA se-
quences is very different from the costs in the protein se-
quences of BAliBase, so we obtain more diverse bench-
marks as well.

Results
We have shown above that hall,k

PhO strictly dominates hall,k.
Here, we want to experimentally confirm this result by com-
paring the two heuristics on both benchmark sets. Our eval-
uation considers two settings: first, we compare both ap-
proaches when using the same set of patterns, namely all
projections of size three. Besides this, we show results for
hall,3 in relation to post-hoc optimization with all patterns of
sizes two and three, which we denote by hall,2+3

PhO . The latter
exemplifies the flexibility of post-hoc optimization, which,
in contrast to hall,k, supports arbitrary pattern collections.

The observations are similar on both benchmark sets. We
see that hall,3

PhO yields a higher heuristic value than hall,3 fre-
quently, with an increase of up to 5% when considering the
DNA sequences. On the BAliBase instances, the advantage
of post-hoc optimization is smaller, with a maximum im-
provement of 0.07%. As expected, hall,3 never yields higher
estimates than hall,3

PhO .
The plots in Figures 6 and 7 show the improvement of

post-hoc optimization over hall,3 on the DNA sequences,
where the different heuristic values can be nicely visualized.
Each point in a plot represents one MSA instance, where
the x-value is the heuristic value of hall,3 and the y-value is

the ratio of hall,3
PhO over hall,3. So values greater than y = 1

indicate that hall,3
PhO obtains a higher heuristic value.

In Figure 6, we compare both heuristics on the same pat-
tern collection that consists of all projections of size three.
Here, hall,3

PhO yields a higher heuristic value in 296 out of the
900 instances. In Figure 7 we highlight that post-hoc op-
timization can be computed over arbitrary pattern collec-
tions. We observe that this flexibility indeed pays off and
the heuristic improves over hall,k in 422 instances. This in-
dicates the potential of the more versatile cost partitioning
methods. For future work, we hypothesize that the pattern
selection can be tailored for specific cost partitioning meth-
ods, so that higher heuristic values can be achieved, e.g., by
finding a good middle ground between the collections used
in hall,k and hone,k.

Conclusions

We have established novel theoretical connections between
existing heuristics for MSA and cost partitioning. We intro-
duced cost components to reason about the transition costs
of specific interactions between two sequences. Using this
concept, we adapted uniform cost partitioning and post-
hoc optimization, two well-known cost-partitioning meth-
ods from automated planning, and developed two new
heuristics hUCP and hPhO respectively. We showed that these
two heuristics are admissible and established that, for pattern
collections consisting of all k-folds, hUCP is hall,k and that
hPhO strictly dominates hall,k. Furthermore, we showed that
both heuristics dominate hone,k if using the same pattern col-
lection as hone,k. In our experimental evaluation, we verified
that the dominance relationship between hall,k and hPhO is
not merely a theoretical curiosity, but that these differences
do frequently have an impact on the initial heuristic value.
Finally, our experiments also highlighted that the flexibility
of hPhO allows the heuristic to yield even higher heuristic
values in many instances, when not restricted to the pattern
collections of hall,k.

For future work, we will investigate by what factor this
difference in initial heuristic value, and differences tied to
the cost partitioning algorithms themselves, carry over to
the actual search with A∗. This includes other techniques
applied during search, too, such as deciding when to recom-
pute cost partitionings, which is necessary for post-hoc op-
timization (Höft, Speck, and Seipp 2023). We also want to
investigate more cost-partitioned heuristics for MSA, such
as saturated cost partitioning (Seipp, Keller, and Helmert
2017) and saturated post-hoc optimization (Seipp, Keller,
and Helmert 2021), as well as preprocessing techniques for
pattern collections. For instance, can we show that a pattern
collection P will never achieve a higher heuristic value than
a collection P ′ when employing a specific cost-partitioning
method? In particular, we have already found that for four
sequences, we can disregard up to 80% of the candidate pat-
tern collections that are subsets of all 2-folds and 3-folds.
The question is whether this can be generalized to any num-
ber of sequences.

References
Carrillo, H.; and Lipman, D. 1988. The Multiple Sequence
Alignment Problem in Biology. SIAM Journal on Applied
Mathematics, 48(5): 1073–1082.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence, 14(3): 318–334.
Edelkamp, S. 2001. Planning with Pattern Databases. In
Proc. ECP 2001, 84–90.
Felner, A.; Korf, R.; and Hanan, S. 2004. Additive Pattern
Database Heuristics. JAIR, 22: 279–318.
Franco, S.; Torralba, Á.; Lelis, L. H. S.; and Barley, M. 2017.
On Creating Complementary Pattern Databases. In Proc.
IJCAI 2017, 4302–4309.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New Admis-
sible Heuristics for Domain-Independent Planning. In Proc.
AAAI 2005, 1163–1168.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proc.
AAAI 2007, 1007–1012.
Höft, P.; Speck, D.; and Seipp, J. 2023. Sensitivity Analysis
for Saturated Post-hoc Optimization in Classical Planning.
In Proc. ECAI 2023, 1044–1051.
Ikeda, T.; and Imai, H. 1994. Fast A* Algorithms for Multi-
ple Sequence Alignment. Genome Informatics, 5: 90–99.
Karpas, E.; and Domshlak, C. 2009. Cost-Optimal Planning
with Landmarks. In Proc. IJCAI 2009, 1728–1733.
Katz, M.; and Domshlak, C. 2008. Optimal Additive Com-
position of Abstraction-based Admissible Heuristics. In
Proc. ICAPS 2008, 174–181.
Katz, M.; and Domshlak, C. 2010. Optimal admissible com-
position of abstraction heuristics. AIJ, 174(12–13): 767–
798.
Kobayashi, H.; and Imai, H. 1998. Improvement of the A*
Algorithm for Multiple Sequence Alignment. Genome In-
formatics, 9: 120–130.
Needleman, S. B.; and Wunsch, C. D. 1970. A general
method applicable to the search for similarities in the amino
acid sequence of two proteins. Journal of molecular biology,
48(3): 443–453.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. In Proc. AAAI 2015, 3335–3341.
Pommerening, F.; Keller, T.; Halasi, V.; Seipp, J.; Sievers,
S.; and Helmert, M. 2021. Dantzig-Wolfe Decomposition
for Cost Partitioning. In Proc. ICAPS 2021, 271–280.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning. In
Proc. IJCAI 2013, 2357–2364.

Riesterer, M. 2018. Cost Partitioning Techniques for Mul-
tiple Sequence Alignment. Master’s thesis, University of
Basel.
Seipp, J.; and Helmert, M. 2014. Diverse and Additive
Cartesian Abstraction Heuristics. In Proc. ICAPS 2014,
289–297.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
JAIR, 62: 535–577.
Seipp, J.; Keller, T.; and Helmert, M. 2017. A Comparison
of Cost Partitioning Algorithms for Optimal Classical Plan-
ning. In Proc. ICAPS 2017, 259–268.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. JAIR, 67: 129–
167.
Seipp, J.; Keller, T.; and Helmert, M. 2021. Saturated Post-
hoc Optimization for Classical Planning. In Proc. AAAI
2021, 11947–11953.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Thompson, J. D.; Plewniak, F.; and Poch, O. 1999. BAl-
iBASE: a benchmark alignment database for the evaluation
of multiple alignment programs. Bioinformatics, 15(1): 87–
88.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A General Theory of Additive State Space Abstrac-
tions. JAIR, 32: 631–662.

