
Gotta Catch ’Em All! Sequence Flaws in CEGAR for Classical Planning

Martı́n Pozo, 1 Álvaro Torralba, 2 Carlos Linares López 1

Universidad Carlos III de Madrid, Madrid, Spain
Aalborg University, Aalborg, Denmark

Abstract

Counterexample-Guided Abstraction Refinement (CEGAR)
is a prominent technique to generate Cartesian abstractions
for guiding search in cost-optimal planning. The core idea is
to iteratively refine the abstraction, by finding a flaw in the
current optimal abstract plan. Previous works find only a sin-
gle flaw, by executing the abstract plan in the concrete state
space and stopping when such execution cannot be continued.
We show, however, that many flaws can be identified on a sin-
gle abstract plan. We introduce sequence flaws, a new defini-
tion of flaw that allows us to characterize issues in the abstract
plan beyond the first one by executing the plan in a Cartesian
relaxation of the problem. This greatly increases the flexibil-
ity of CEGAR regarding how to refine the abstraction.
Our experiments show that across existing benchmarks a high
number of sequence flaws exist in most abstract plans. We ob-
serve that the selected flaw has a high impact on the heuristic,
opening research opportunities for better selection strategies.

Introduction
Abstractions are commonly employed in optimal planning to
generate domain-independent admissible heuristics, as they
offer great flexibility to define well-informed heuristics for
the planning task at hand (Edelkamp 2001; Helmert et al.
2014; Sievers and Helmert 2021). However, such flexibility
raises the question of how to efficiently compute the right
abstraction. A promising method is Counterexample-Guided
Abstraction Refinement (CEGAR), successfully used for
Cartesian abstractions (Seipp and Helmert 2018), PDBs
(Rovner, Sievers, and Helmert 2019) and domain abstrac-
tions (Kreft et al. 2023). CEGAR starts with a trivial abstrac-
tion, where all states are equivalent to each other. Then, it it-
eratively refines the abstraction trying to improve the heuris-
tic value of the initial state. To do so, it searches an optimal
abstract plan and executes it on the original state space. If it
works, an optimal plan has been found and the task is solved.
If it fails, a flaw is identified where the execution could not
continue and the abstraction is refined by splitting such state,
so that flaw cannot happen again (Seipp and Helmert 2013).

Recent work introduced regression flaws. Instead of exe-
cuting the plan forward, the abstract plan is executed back-
wards from the goals. This flaw is often very different from

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

its forward counterpart. Indeed, regression flaws greatly im-
prove the performance of the overall procedure, resulting
in more informed heuristics (Pozo, Torralba, and Linares
López 2024). This shows the importance of considering
new ways of computing flaws, and brings up the question
whether there are other flaws that could be identified.

Indeed, CEGAR was originally introduced in the context
of program verification (Ball, Podelski, and Rajamani 2001;
Smaus and Hoffmann 2009; Hajdu and Micskei 2020; Löwe
2017; Albarghouthi 2015), where the notion of refinement
is based on sequence interpolation, used to find flaws in
several steps of the sequence. Inspired by this we consider
whether the same is true in the planning setting.

In this paper, we show that multiple flaws can be identified
in a single abstract plan, opening multiple alternative ways
for refining the abstraction. Consider for example a problem
where we need to increase two counters from 1 to 5 and
an abstract plan ⟨inc(c1, 2, 3), inc(c2, 4, 5), inc(c1, 4, 5)⟩.
Clearly, there are three separate issues with this plan: (1) c1
“jumps” from 1 to 2 before the first action; (2) c1 “jumps”
from 3 to 4 before the last action; and (3) c2 “jumps” from 1
to 4 before the second action, but current methods will only
find flaw (1) forward and flaw (2) backwards. Furthermore,
some flaws are inherent to the abstraction and independent
of the initial state and the goals. For example, if two con-
secutive actions inc(c1, 1, 2), inc(c1, 3, 4) are somewhere in
the middle of the abstract plan, a flaw should be detected, re-
gardless of the direction either before or afterwards.

We introduce sequence flaws, a new type of flaw that al-
lows the identification of multiple issues in the same abstract
plan. Our experiments show that abstract plans have many
different sequence flaws that can be repaired. As a single
flaw is refined, strategies to determine the flaw to select are
paramount. The results support previous findings, and refin-
ing closer to the goal is usually better. But there are also
promising results, and we observe that different selection
strategies can sometimes lead to better heuristic functions.

Background
We consider tasks in SAS+ representation (Bäckström and
Nebel 1995), where states are described in terms of a set of
variables V , and each v ∈ V has a finite domain, Dv . A
partial state p is a partial variable assignment over some
variables vars(p) ⊆ V . A (concrete) state s is a full as-



signment, i.e., vars(s) = V . We write p[v] for the value
assigned to the variable v ∈ vars(p) in the partial state p.
Two partial states p and c are consistent if p[v] = c[v] for all
v ∈ vars(p) ∩ vars(c). We denote by S(p) ⊆ S the set of
states consistent with p.

A SAS+ task Π is a tuple ⟨V,O, s0, G⟩ where s0 is the
initial state, G is a partial state that describes the goals, and
O is a set of operators. An operator o ∈ O has precondi-
tions pre(o) and effects eff (o), both of which are partial
states, and a non-negative cost cost(o) ∈ R+

0 . An opera-
tor o is applicable in progression in a state s if s is con-
sistent with pre(o). The result of applying o to s is a state
sJoK where sJoK[v] = eff (o)[v] if v ∈ vars(eff (o)) and
sJoK[v] = s[v] otherwise. We write s

o−→ s′ as a shorthand
whenever o is applicable on s and s′ = sJoK. The post-
conditions of an operator o in progression are defined for
v ∈ vars(pre(o))∪vars(eff (o)) and post(o)[v] = eff (o)[v]
for v ∈ vars(eff (o)) and post(o)[v] = pre(o)[v] other-
wise. The state space of a task Π is a transition system,
Θ = ⟨S,O, T, s0, SG⟩, where S is the set of all states, SG =
{s ∈ S | s is consistent with G} is the set of goal states,
and T = {(s, o, s′) | s ∈ S, o applicable in s, s′ = sJoK} is
the set of transitions. A plan π for s is a sequence of opera-
tors ⟨o1, o2, . . . , on⟩, s.t. the trace s

o1−→ s1
o2−→ . . .

on−→ sn
reaches a goal state sn ∈ SG. The cost of π is the summed
up cost of its operators. The goal distance from s to the goal
h∗(s) is the minimum cost of any plan for s, or∞ if no plan
exists. A plan for Π is a plan for s0.

A common approach to find optimal plans is to use
A∗ search with an admissible heuristic (Dechter and Pearl
1985). A heuristic is a function h : S 7→ R+

0 ∪ {∞}. The
heuristic is admissible if h(s) ≤ h∗(s) for all s ∈ S.

Regression starts from a partial state p and derives
from which states we can reach some state in S(p) by
applying an operator (Rintanen 2008; Alcázar et al. 2013).
An operator o is applicable in regression in p if p is
consistent with prer (o)=post(o). The successor partial
state p′ is defined for (vars(p)\vars(eff (o)))∪vars(pre(o))
and regr(p, o)[v]=pre(o)[v] for v∈vars(pre(o)) and
regr(p, o)[v]=p[v] otherwise. We use p

o←−p′ as a shorthand.
An abstraction α for a transition system T =

⟨S,O, T, s0, SG⟩ is a function α : S 7→ Sα, where Sα is
a finite set of abstract states. The abstract state space Θα =
⟨Sα, O, Tα, sα0 , S

α
G⟩ is a homomorphism of the state space,

i.e., Tα = {(α(s) o−→ α(t) | s o−→ t ∈ T )}, sα0 = α(s0),
Sα
G = {α(s) | s ∈ SG}. Each abstraction induces a heuristic

function where hα(s) is the distance from α(s) to the goal
in Θα. Each abstract state sα ∈ Sα is identified with the set
of states mapped to it, S(sα) = {s | s ∈ S, α(s) = sα}.

Cartesian abstractions are a type of abstractions where
the set of states S(sα) is Cartesian ∀sα ∈ Sα (Seipp and
Helmert 2018). A set of states is Cartesian if it is of the
form A1 × A2 × · · · × An, where Ai ⊆ Dvi∀vi ∈ V .
Given a Cartesian set a, we denote by a[vi] the set of values
that vi can take in a, i.e., a[vi] = Ai ⊆ Dvi . The intersec-
tion of two Cartesian sets is a Cartesian set, where a′[v] =
a1[v] ∩ a2[v] ∀v ∈ V . Figure 1 shows a Cartesian plan,
where for example, in a1, v1 = {1} and v2={2, 3}. Also,

for any (partial) state p, we can build a Cartesian set C(p)
such that S(C(p))=S(p), by making C(p)[v]={C(p)[v]} if
v∈vars(p) and C(p)[v]=Dv otherwise. We will use this con-
version of (partial) states into Cartesian sets implicitly, so
with a slight abuse of notation we define operations such as
the intersection of a partial state p and a Cartesian set a as
the Cartesian set p ∩ a:=C(p) ∩ a.

The most successful technique to obtain Cartesian ab-
stractions is CEGAR (Seipp and Helmert 2013, 2018). It
starts with the trivial abstraction, which consists of a single
abstract state a s.t. a[v]=Dv ∀v∈vars(v). Then, it is itera-
tively refined until reaching a termination condition or find-
ing a concrete plan. The refinement loop finds an optimal ab-
stract plan trace τα = a0

o1−→ . . .
on−→ an, and it is executed

in the concrete space, resulting in a trace s0
o1−→ . . .

on−→ sn.
If this execution succeeds and sn∈SG, then it is an optimal
plan for the task. Furthermore, we say that τα is mappable if
each concrete state is included in the corresponding abstract
state, i.e. si ∈ S(ai) for all i ∈ [0, n].

If the abstract plan trace is not mappable, a flaw is re-
ported and the abstraction is refined by splitting an abstract
state of the plan into two, in such a way that the same flaw
cannot happen again. A flaw is a tuple ⟨si, c⟩ of a state si∈S
and a Cartesian set c. We can distinguish a different type
of flaw for each reason that can cause the execution of τα
to fail at step i: (1) si is the first state in which oi+1 is not
applicable and c is the set of states in ai in which oi+1 is ap-
plicable, i.e. c=ai ∩ pre(oi+1). (2) si is the first state where
oi+1 is applicable but siJoi+1K is not mapped to ai+1. Then,
c is the set of states in ai from which ai+1 is reached when
applying oi. (3) The sequence can be executed but sn is not
a goal state. This results in the flaw ⟨sn, G⟩.

A flaw ⟨s, c⟩ is repaired by splitting α(s) into two ab-
stract states d and e with s ∈ d and c ⊆ e. Usually, multiple
possible splits exist in different variables to fix the flaw. A
split selection strategy is a criterion to choose a split among
the ones that fix the flaw (Seipp and Helmert 2013, 2018).
The process refines the abstraction until solving the problem
either by finding an optimal plan or proving the task unsolv-
able (an abstract plan cannot be found). It can be stopped
by some termination condition (typically a time or memory
limit), resulting in an abstraction that induces a heuristic.

Recent work has introduced regression flaws, found by
executing the abstract plan in regression from the goals, with
better results than progression flaws (Pozo, Torralba, and
Linares López 2024). They are computed similarly to pro-
gression flaws, with the only difference of not requiring that
the Cartesian state of the partial state is included in the ab-
stract state but their intersection is not empty, since the for-
mer would be too restrictive. So, there are three types of
flaws: (1) pi is the first partial state in regression in which
oi is not backward applicable, and c is the set of states in
ai where oi is backward applicable. (2) pi is the first partial
state in regression where oi is backward applicable but the
intersection of its successor and ai−1 is empty; then, c is the
set of states in ai reached when applying oi in ai−1. (3) The
sequence can be executed but s0 /∈ p0, and c is the Cartesian
set of s0. The strength of this technique is maximizing h for



a0start

{0, 1} × {1}

a1

{1} × {2, 3}

o2 a2

{0, 1} × {4}

o4

Figure 1: Abstract plan with sequence flaws in v2 detected
neither by forward nor backward first-flaws.

states closer to the goals, increasing the average h despite
getting lower heuristic values for s0 and requiring more iter-
ations to find a plan during the refinement loop.

Another concept introduced by this work is splitting
strategies: for progression flaws the split value is the one in-
side c (the Cartesian set in which the flaw does not happen),
but for regression flaws splitting the value in the partial state
(the value producing the flaw) gets better results. Hence, this
work defines two strategies: wanted for splitting the value in
c and unwanted for splitting the value in the state (Pozo,
Torralba, and Linares López 2024).

Sequence Flaws
Our main contribution is the definition of sequence flaws.
This allows us to find more flaws in the abstract plan.

Consider a planning task in which a worker must get a
package out of a building, passing through three rooms sep-
arated by doors, all open or all closed. A button carried by
the worker opens the doors of all rooms, and all doors are
automatically closed when somebody leaves the building.
Initially, the worker is in the first room with doors closed,
and the goals are to bring the package out of the building
leaving all doors open. Let v1 denote the state of the doors
(1 means open, 0 means closed), and v2 the room where the
package is located (1, 2, 3 are the rooms and 4 is the street).
o1 presses the button to open doors, and o2, o3, o4 move the
package, with oi moving it from (i− 1) to i. Formally,

V={v1, v2} with Dv1={0, 1} and Dv2={1, 2, 3, 4},
O={o1, o2, o3, o4} with
pre(o1)={v1 7→ 0}, eff (o1)={v1 7→ 1},
pre(o2)={v1 7→ 1, v2 7→ 1}, eff (o2)={v2 7→ 2},
pre(o3)={v1 7→ 1, v2 7→ 2}, eff (o3)={v2 7→ 3},
pre(o4)={v1 7→ 1, v2 7→ 3}, eff (o4)={v1 7→ 0, v2 7→ 4}.
s0={v1 7→ 0, v2 7→ 1}, G={v1 7→ 1, v2 7→ 4}.

The abstract plan shown in Figure 1 has a progression se-
quence flaw in v2, because o4 is not applicable in the state
reached after applying o2 (mapped to a1), since the worker
is not in the correct room, so that o3 must be applied before
o4. It also has a regression sequence flaw in v2 because o2 is
not backward applicable in the state reached after applying
o4 in regression (mapped to a1) because the worker is not
in the correct room. They are detected neither using the first
progression nor regression flaw, which only detect o2 is not
applicable in a0 because v1 7→ 0 (the doors are closed) and
v1 7→ 0 instead of 1 in the goal state (doors must be opened
to meet the goals). So stopping at the first flaw completely
ignores the existence of problems in the other goal (v2 7→ 4).

Sequence flaws can capture issues that are not detected
until repairing all the flaws happening before them when
stopping at the first flaw. In previous work, flaws are found
by executing the operators in the abstract plan on the con-
crete (partial in regression) state space, generating a se-
quence s0

o1−→ s1
o2−→ . . .

on−→ sn (pn
on←− . . .

o0←− p0 in
regression). Instead, we consider a relaxation of such an ap-
proach, that results in a sequence of Cartesian sets.

An operator is applicable in a Cartesian set c if pre(o) ∩
c ̸= ∅, and the result of applying o to c is another Cartesian
set cJoK where cJoK[v] = post(o)[v] if v ∈ vars(post(o))
and cJoK[v] = c[v] otherwise. In the resulting Cartesian set,
the variables of effects and preconditions of o have a sin-
gle value. Note that this corresponds to all states reachable
by applying o from any state in c: S(cJoK) = {s′ | s ∈
S(c) ∧ s

o−→ s′}. An operator o is applicable in regres-
sion in c if prer (o) ∩ c ̸= ∅, and the result of applying o
in regression to c is another Cartesian set regr(c, o) where
regr(c, o)[v] = pre(o)[v] for v ∈ vars(pre(o)), {Dv} for
v ∈ vars(eff (o)) \ vars(pre(o)) and c[v] otherwise. We de-
fine cJoK! and regr !(c, o) as the application of an operator o
on a Cartesian set c in progression and regression even when
o is not applicable.

Progression Sequence Flaws
To define progression sequence flaws, we first introduce
which conditions must be fulfilled by the relaxed execution
of abstract plans.

Definition 1 (Relaxed Plan Execution). A relaxed plan exe-
cution r = r0, r1, . . . , rn, for an abstract plan τα = a0

o1−→
a1

o2−→ . . .
on−→ an is a sequence of Cartesian sets ri so that:

(A) s0 ∈ S(r0),
(B) if oi+1 is applicable on ri, riJoi+1K ∩ ai+1 ⊆ ri+1,
(C) if oi+1 is not applicable on ri, riJoi+1K!∩ai+1 ⊆ ri+1,
(D) ri ∩ ai ̸= ∅.

Each Cartesian set ri in a relaxed plan execution repre-
sents the states related to the corresponding abstract state ai
of the abstract plan that could be reached by applying the
prefix plan. The execution is relaxed, meaning that at any
step in the plan, more states can be added into ri depend-
ing on the relaxation chosen. This allows, for example, the
execution of a plan while ignoring some of the variables al-
together to detect flaws on the remaining variables. These
conditions keep the execution coherent with the application
of the operators in the plan. Specifically, (A) and (B) ensure
that if the abstract plan trace is executable and mappable in
the concrete state space, then no flaw can be found. Condi-
tion (C) aims to keep some coherence in the execution even
when an operator is not applicable. Specifically, variables
not affected by the operator must keep their values, and the
resulting state must satisfy the post-conditions of the opera-
tor. The intuition is that the remaining part of the execution
will check if the suffix of the plan works in case it is possible
to fix the prefix of the plan in such a way that the operator
was applicable. If that is not the case, we consider the suf-
fix has a flaw. Lastly, condition (D) ensures that any flaw we
find can be used to refine the corresponding abstract state ai.



Definition 2 (Progression Sequence Flaw). Let τα = a0
o1−→

a1
o2−→ . . .

on−→ an be an abstract plan and r =
r0, r1, . . . , rn a relaxed plan execution for τα. A progres-
sion sequence flaw in τα is a tuple ⟨ri, c⟩ consisting of two
Cartesian sets ri and c such that:

(1) oi+1 is not applicable from ri, and c is the set of states in
ai in which oi+1 is applicable, i.e. c = ai ∩ pre(oi+1);

(2) oi+1 is applicable from ri, but its successor does not
intersect to ai+1, i.e. riJoi+1K ∩ ai+1=∅, and c is the
states in ai from which ai+1 is reached by applying oi+1;

(3) i = n, and rn ∩G = ∅, producing the flaw ⟨rn, G⟩.
Note that, to determine if there is a flaw at step i, only

the prefix of the execution r0, r1, . . . , ri is relevant, as the
relaxed execution can always be continued, e.g., by setting
rj = aj for j ∈ [i+ 1, . . . , n].

Theorem 1. Let τα = a0
o1−→ a1

o2−→ . . .
on−→ an be an

abstract plan trace. Then, τα is mappable iff τα has no pro-
gression sequence flaw.

Proof. On the one hand, assume τα has no progression se-
quence flaw. Then, we show by induction that the plan is
mappable. For the base case, r0 is the Cartesian set such that
S(r0)={s0}. For the inductive case, since there is no flaw of
types (1) and (2), oi is applicable on ri−1, resulting in some
ri whose intersection with ai is not empty. As S(ri)={si}
then si−1

o−→si. Finally, as there is no flaw of type (3),
rn∩G ̸=∅, so sn is a goal state. Then, s0

o1−→ . . .
on−→ sn

is a plan, where si ∈ S(ri) ∀i ∈ [0, n− 1] and sn ∈ S(G).
On the other hand, assume that τα is mappable. Then

s0
o1−→ . . .

on−→ sn is a valid plan such that si ∈ S(ai) for
all i ∈ [0, n]. Consider any arbitrary relaxed plan execution
r0, r1, . . . , rn. By condition (A), s0 ∈ S(r0). By induction,
oi is applicable in ri−1 because it is applicable in si−1, so no
flaw of type (1) exists. By condition (B) riJoi+1K ∩ ai+1 ⊆
ri+1, so si ∈ S(ri) and ri ∩ ai ̸= ∅ : ∀i ∈ [0, n − 1], so
no flaw of type (2) exists. Finally, no flaw of type (3) exists
because sn is a goal state and sn ∈ S(rn).

Theorem 2. Let τα = a0
o1−→ a1 . . .

on−→ an be an abstract
plan trace. Then, ⟨o1, . . . , on⟩ may be a plan even if τα has
progression sequence flaws of type (2).

Proof. The example used in (Pozo, Torralba, and Linares
López 2024) applies. Consider a task with binary variables
V = {v1, v2}, s0 = {v1 7→ 0, v2 7→ 0}, G = {v2 7→
1} and operators O = {o1}, pre(o1)={v2 7→ 0} and
eff (o1)={v2 7→ 1}, and an abstraction with states Sα =
{a0 = ⟨{0, 1}×{0}⟩, a1 = ⟨{0}×{1}⟩, a2 = ⟨{1}×{1}⟩}.
The abstract plan trace τα = a0

o1−→ a2 has a progression
sequence flaw of type (2) in o1 but ⟨o1⟩ is a plan, only that
the final state is mapped to a1 instead of a2.

Even though our definition allows arbitrarily big Carte-
sian sets along the relaxed execution, doing so results in
finding fewer flaws. In the extreme case, if all ri are com-
pletely relaxed, all operators would be applicable on ri and
no flaws could be found. In Figure 1, r1 could be the Carte-
sian set ⟨{0, 1}× {1, 2, 3, 4}⟩. But doing this no flaw would

Algorithm 1: Find Progression Sequence Flaws
Data: Π=⟨V,O, s0, G⟩, τα ; // task, abstract plan trace
Data: r=s0, i=0 ; // r and i, with default values
Result: flaws ; // Progression sequence flaws for τα

1 flaws ← ∅
2 while i < n− 1 do
3 if not applicable(r, oi) then
4 flaws ← flaws ∪ {⟨r, ai ∩ pre(oi)⟩}
5 r ← rJoiK! ; // Apply oi even if it is not applicable
6 if r ∩ ai+1 = ∅ then
7 flaws ← flaws ∪ {⟨r, ai ∩ regr(ai+1, oi)⟩}

// Undeviate the Cartesian set
8 forall v ∈ V do
9 if r[v] ∩ ai+1[v] = ∅ then

10 r[v]← ai+1[v]
11 i← i+ 1
12 if r ∩G = ∅ then
13 flaws ← flaws ∪ {⟨r,G⟩}
14 return flaws

be found in o4, due to v2 7→ 3 is included in r1, while if we
make r1=⟨{1}×{2}⟩, we find that o4 is inapplicable due to
v2 7→ 2 after applying o2.

Theorem 3. Let r=r0, r1, . . . , rn be a relaxed execution
for τα = a0

o1−→ a1 . . .
on−→ an. Let zi be a Carte-

sian set such that zi ∩ ai ̸= ∅, ri−1JoiK ∩ ai ⊆ zi, and
S(zi) ⊂ S(ri). Then, there exists another relaxed execu-
tion z=r0, r1, . . . , ri−1, zi, zi+1, . . . , zn such that S(zj) ⊆
S(rj) for j ∈ [i, n] and any progression sequence flaw of r
is a progression sequence flaw of z.

Proof. Any flaw found at step i on ri, is a flaw for zi as well:

(1) If oi+1 is not applicable on ri, then there is some pre-
condition vi 7→x of oi+1 such that x ̸∈ ri[v]. As S(zi) ⊂
S(ri), then x ̸∈ zi[v], and the flaw is also found in zi.

(2) If riJoi+1K ∩ ai+1=∅, then there exist some v such
that ai+1[v] ∩ riJoi+1K = ∅. As S(zi) ⊂ S(ri), then
ziJoi+1K[v] ⊆ riJoi+1K[v] = ∅, so a flaw is found for z
as well.

(3) If i = n and ri ∩G = emptyset, then zi ∩G = ∅.

For the rest of the execution, note that applying zj = rj for
j ∈ [i + 1, n] results in a valid execution. However, it is
worth noting that other continuations where S(zj) ⊂ S(rj)
may result in more flaws.

Progression Sequence Flaws Collection
Algorithm 1 shows the proposed procedure to collect all the
sequence forward flaws of an abstract plan. Contrary to the
standard procedure that executes the abstract plan on the
concrete state space, we consider the execution over Carte-
sian sets. Initially, the abstraction contains a single state, and
therefore the first flaw found by Algorithm 1 will be the
same flaw reported by the standard procedure. However, in
the next iterations Algorithm 1 continues looking for more
flaws until the end of the abstract plan.



The algorithm is always invoked with the default parame-
ters except for those special strategies introduced in the next
section, so it starts at s0. We apply operators even when they
are not applicable, and when flaws of the second type occur,
we “undeviate” the resulting Cartesian set. We do this by re-
setting ri+1[v] to all values compliant with the abstract state
ai+1. When a flaw with respect to v has been found, we al-
low v to take any value consistent with the next abstract state
space. So, we might not want to report the same flaw in sub-
sequent steps of the plan. Note that a second flaw involving
the same variable v may be reported, e.g., if somewhere in
the remaining abstract plan two operators are applied with
contradicting preconditions over v.

Theorem 4. All flaws returned by Algorithm 1 are progres-
sion sequence flaws.

Proof. Flaws are accumulated in lines 4, 7 and 13. In line 4,
the flaw ⟨ri, ai ∩ pre(oi+1)⟩ is added if the operator is not
applicable, exactly as flaw (1) in Definition 2 does. In line
7, the flaw ⟨ri, ai ∩ regr(bi, oi+1)⟩ is added if r ∩ b = ∅,
exactly as flaw (2) does. In line 13, the flaw ⟨rn, G⟩ is added
if rn ∩G = ∅, exactly as flaw (3) does.

Algorithm 1 does not find all forward sequence flaws. As
Theorem 3 shows this would require always keeping each ri
as small as possible. Yet, there are two points in Algorithm 1
where r keeps values that could be removed in an attempt to
find only flaws that are relevant. In line 5, we could replace
r by r ∩ ai+1. However, this simply insists on keeping the
relaxed execution fully aligned with the abstract plan trace,
which could lead to find flaws in cases where the plan is
valid through other abstract states (as Theorem 2 shows).
Also, in line 9, assigning a single value from ai+1[v] instead
of all of them would suffice to keep property (D). However,
at that point, the algorithm has already found a flaw with
respect to v so, by continuing the relaxed execution with all
values in ai+1, we seek to only report another flaw if the
execution fails from all those values.

Regression Sequence Flaws
A relaxed plan backward execution can be defined analo-
gously to Definition 1 but replacing s0 by G and the appli-
cation of operators in progression by regression.

Definition 3 (Relaxed Plan Backward Execution). A relaxed
plan backward execution r = rn, rn−1, . . . , r0, for an ab-
stract plan τα = a0

o1−→ a1
o2−→ . . .

on−→ an is a sequence of
Cartesian sets ri so that:

(A) G ∈ S(rn),
(B) if oi is regressable on ri, regr(ri, oi) ∩ ai−1 ⊆ ri−1,
(C) if oi is not regressable on ri, regr !(ri, oi)∩ai−1⊆ri−1,
(D) ri ∩ ai ̸= ∅.

Definition 4 (Regression Sequence Flaw). Let τα = a0
o1−→

a1
o2−→ . . .

on−→ an be an abstract plan and r =
rn, rn−1, . . . , r0 a relaxed plan backward execution for τα.
A regression sequence flaw in τα is a tuple ⟨ri, c⟩ consisting
of two Cartesian sets ri and c such that:

(1) oi is not regressable from ri, and c is the set of states in
ai in which oi is applicable, i.e. c = ai ∩ prer (oi);

(2) oi is regressable from ri, but its successor does not in-
tersect to ai−1, i.e. regr(ri, oi) ∩ ai−1=∅, and c is the
states in ai from which ai−1 is reached by regressing oi;

(3) i = 0, and s0 /∈ r0, producing the flaw ⟨r0, s0⟩.

Theorem 5. Let τα = a0
o1−→ a1

o2−→ . . .
on−→ an be an

abstract plan. Then, ⟨o1, . . . , on⟩ is a plan if τα has no re-
gression sequence flaw.

Proof. If no regression sequence flaw exists in the abstract
plan, there is no flaw of type (3), so that s0 ∈ S(r0). For the
inductive case, if si ∈ S(ri) and ri = regr(ri+1, oi+1), by
the definition of regression there must exist si+1 ∈ S(ri+1)
such that siJoiK = si+1. Finally, sn ∈ S(G) due to condi-
tion (A), so the sequence is a plan.

The algorithm to collect regression flaws is like Algorithm
1 but swapping s0 and G and using regression semantics.

Progression flaws in the state ak are different to regression
flaws in the state ak+1 (Pozo, Torralba, and Linares López
2024). Thus, to get all flaws, the search must be conducted
in both directions.

Flaw Selection Strategies
Using sequence flaws allows us to identify a possibly large
set of flaws for a single abstract plan. The next step is then to
refine the abstraction, splitting an abstract state according to
one of the flaws, so that the same abstract plan is no longer
applicable in the refined abstraction. While it would be pos-
sible to refine the abstraction according to multiple flaws,
it suffices to choose one of them, refining the abstraction,
and finding new flaws according to the new abstract plan, as
perhaps other flaws become irrelevant after the refinement.
Still, with a larger set of flaws that can be chosen, repairing
the right flaw at each step becomes paramount. Otherwise,
finding many flaws in the abstract plan is even harmful if the
chosen refinement is worse than repairing the first flaw.

We collect all flaws either in the forward (progression
flaws), backward (regression flaws), or both directions (bidi-
rectional strategies). Next, we pick one flaw according to one
of the following strategies:

Default Choose the first flaw found along the abstract
plan, the same definition of flaw used in previous work.

Last flaw (last) Choose the last flaw found along the ab-
stract plan. This is thus specially interesting for forward re-
finements, as flaws are found closer to the goal.

Most refined flaw (ref) Choose the most refined state,
i.e., the one with the lowest number of values for the flawed
variable respect the size of its domain. It deeps into states
refined in previous steps, which results in more focused re-
finements. This criterion was used to choose splits among
abstract plans with good results (Speck and Seipp 2022).



0 101 103 105 107 uns.
0

101

103

105

107

uns.

Fit (lower for 195)

F
(l

ow
er

fo
r6

9)

0 101 103 105 107 uns.
0

101

103

105

107

uns.

Fit (lower for 114)

B
(l

ow
er

fo
r1

63
)

0 101 103 105 107 uns.
0

101

103

105

107

uns.

Fit (lower for 198)

B
i
t

(l
ow

er
fo

r8
8)

0 101 103 105 107 uns.
0

101

103

105

107

uns.

BCGr (lower for 145)

B
(l

ow
er

fo
r1

43
)

Figure 2: Expansions until last f -layer of selected single-abstracton strategies.

Highest cost operator (cost) Choose the flaw at step i if
oi+1 is the operator with the highest cost among flaws. The
aim is to refine at points where more cost is being spent,
which could be specially relevant with cost partitioning, as
the cost of many operators is low.

Causal Graph Variable Ordering (CG and CGr) Given a
fixed ordering on V , choose the flaw related to the lowest
variable in the ordering. We consider two orders based on
topological order of the causal graph (Helmert 2004, 2006),
which have been used before as merge strategies in merge-
and-shrink heuristics (Helmert et al. 2014). CG selects first
the variables with the most indirect influence over the goals,
whereas the reverse ordering, CGr, attempts to select vari-
ables close to the goal first.

Iterative abstract flaws (it) In the forward direction, this
strategy starts searching flaws at the end of the plan (Algo-
rithm 1 parameters r = an, i = n) and it iteratively invokes
the algorithm from the previous step of the plan until finding
a flaw. Finally, if no flaw is found from the initial abstract
state, then it is searched from the concrete initial state. In
the backward direction, this strategy is like the first flaw but
starting from the goal abstract state instead of the goal par-
tial state, returning the first flaw from the goal partial state if
no flaw is found from the goal abstract state.

Closest to goal flaw (clo) Choose the flaw closer to the
goal. This is only relevant to the bidirectional case, as in the
backward case this is equivalent to the default strategy, and
in the forward case it is equivalent to last.

On all strategies, whenever more than one flaw could be
selected, we break ties according to ref.

After selecting the flawed state ai, one must decide how
to split it to refine the abstraction. Typically, several possi-
ble splits exist, that divide ai into a′i and a′′i according to a
variable so that ri ∩ a′i = ∅ and c ∩ a′′i = ∅.

The best split at each flawed state is chosen by using split
selection strategies (Speck and Seipp 2022). The default
strategy maximizes the amount of flaws covered, breaking
ties in favor of the most refined split.

Some flaw selection strategies depend on the splits to be
accurate, so the split selection strategy must use the same
criterion. These strategies are ref, CG, CGr and cost. In
these cases, ties are broken in favour of the most refined
split. For these strategies, splits must be computed in all the

flawed states before choosing one of them. Otherwise, the
best split is computed only in the chosen flawed state.

To save the computations of splits, we cache the best split
for each abstract state. However, the cached values are often
invalidated, each time a connected abstract state is refined.

Experiments
We implemented the sequence refinement within the Scor-
pion planner (Seipp, Keller, and Helmert 2020). We use the
Autoscale 21.11 benchmark set (Torralba, Seipp, and Siev-
ers 2021), which contains the 42 domains of the Interna-
tional Planning Competitions (IPC) up to 2018 with 30 tasks
each. All experiments are limited to 30 minutes and 8 GB of
RAM and run in a Debian 10.2 server with an AMD EPYC
7551 CPU at 2.5 GHz

We find optimal abstract plans using incremental search
(Seipp, von Allmen, and Helmert 2020), the default and
faster option in Scorpion. For single abstraction experiments
we set 10 million of non-looping transitions as the termina-
tion condition because the default value of 1 million is too
low for a single abstraction and for a better measurement of
the performance penalty of computing sequence flaws.

In Scorpion’s implementation, goals are refined before
starting the main CEGAR loop as an optimization. We keep
this only for forward refinements, where it improves the re-
sults, but it is disabled on all configurations using sequence
flaws to compute all flaws in all steps. Another optimization,
kept on all configurations, is refining all unreachable facts
before goal on tasks with a single goal. They are found us-
ing the relaxed planning graph (Blum and Furst 1997). All
experiments reported here use the “wanted” splitting strat-
egy for progression flaws and the “unwanted” strategy for
regression flaws, since this setting gets the best results in
previous work (Pozo, Torralba, and Linares López 2024).

Code and experimental data are published in Zenodo
(Pozo, Torralba, and Linares López 2024).

Single Abstraction Experiments
A comparison on the total coverage (in number of domains
with more tasks being solved) of forward, backward and
bidirectional strategies is shown in Table 1. B solves more
problems than the other strategies, and the best non-default
strategy in all directions is it. The second-best strategies
are Flast, BCGr and the Dclo. Fit solves 21 more problems



F Flast Fref Fcost FCG FCGr Fit Cov

F∗ 23 23 24 25 24 18 11 456

F – 7 2 5 8 11 5 416
Flast 9 – 8 9 10 11 4 421
Fref 2 6 – 5 6 11 4 413
Fcost 1 6 2 – 4 11 4 410
FCG 4 8 4 4 – 12 5 411
FCGr 11 13 11 12 13 – 7 405
Fit 19 16 9 21 20 16 – 437

BBlast Bref Bcost BCG BCGr Bit Cov

B∗ 15 29 18 21 28 15 15 478

B – 24 5 9 23 14 6 451
Blast 0 – 4 3 9 5 0 400
Bref 2 21 – 6 20 12 5 432
Bcost 0 21 1 – 18 9 4 433
BCG 1 10 4 4 – 7 1 412
BCGr 11 22 12 13 20 – 12 438
Bit 5 23 8 9 21 12 – 445

DDlast Dref Dcost DCG DCGr Dit Dclo Cov

D∗ 28 30 18 23 29 15 22 23 470

D – 24 6 13 24 13 13 9 452
Dlast 0 – 4 4 9 5 2 2 401
Dref 2 21 – 12 21 13 9 11 422
Dcost 1 17 2 – 16 9 8 9 413
DCG 1 10 4 6 – 8 6 8 407
DCGr 11 23 14 15 20 – 14 15 425
Dit 0 20 3 9 18 8 – 7 428
Dclo 0 17 4 10 19 8 3 – 427

Table 1: Per-domain coverage of forward, backward and bidirectional strategies for a single abstraction. The ∗ variant is the
best strategy at each domain. The cell in row x and column y shows the number of domains where method x solved more tasks
than method y. “Cov” indicates the total number of tasks solved.

Forward Sequence Flaws Backward Sequence Flaws Bidirectional Sequence Flaws
F Flast Fref Fcost FCG FCGr Fit B Blast Bref Bcost BCG BCGr Bit D Dlast Dref Dcost DCG DCGr Dit Dclo

Sol. in loop 173 110 173 152 146 149 140 133 146 145 145 139 145 144 142 145 144 139 152 130 120 109
Abs. time (h) 20.3 18.1 59.0 52.9 47.2 37.7 25.3 26.8 26.3 57.5 62.8 58.5 60.5 28.3 46.5 31.5 97.7 94.9 86.6 90.2 43.5 39.6
Cost (M) 0.19 0.14 0.16 0.08 0.19 0.06 0.20 0.30 0.17 0.24 0.29 0.26 0.06 0.30 0.31 0.17 0.24 0.26 0.18 0.05 0.11 0.13
Ref. (G) 0.30 0.17 0.28 0.28 0.28 0.16 0.21 0.30 0.14 0.27 0.27 0.26 0.16 0.32 0.29 0.14 0.26 0.27 0.28 0.14 0.19 0.18
F. Flaw (G) 0.3 1.3 1.5 1.4 1.5 1.2 0.2 – – – – – – – 0.3 1.0 1.8 1.8 1.5 1.6 0.2 1.3
B. Flaw (G) – – – – – – – 0.3 0.8 1.6 1.5 1.5 1.4 1.4 0.8 0.8 1.5 1.5 1.6 1.4 0.6 0.6
F. Flaw (%) 8.0 49.0 38.0 40.8 47.6 50.8 14.2 – – – – – – – 9.3 50.5 47.9 47.6 49.4 72.2 14.4 49.2
B. Flaw (%) – – – – – – – 9.6 39.7 36.4 34.8 42.3 51.4 9.59 9.3 39.7 36.3 35.9 44.2 56.8 11.4 27.5
F. Pos. (%) 45.7 51.2 46.4 45.6 45.9 49.0 51.8 – – – – – – – 7.2 3.7 34.4 13.0 41.0 42.1 48.3 49.6
B. Pos. (%) – – – – – – – 45.9 39.9 46.6 46.7 43.9 43.4 45.9 47.2 39.9 46.9 45.5 44.2 45.8 45.4 46.4

Table 2: Statistics for a single abstraction heuristics. ‘Sol. in loop’ is the tasks solved in the loop, ‘Abs. time’ is the time to build
all abstractions. ‘Ref.’ is the number of refinements, F/B. Flaws are the flawed states found for all tasks, and the percentage
respect the states of the abstract plan. ‘F/B. Pos.‘ is the relative position of the selected flawed state respect to the plan length.

than F , and it is better than F in 19 domains and worse in
5 domains. Also, although the best backward strategy solves
6 fewer problems, some strategies perform better in some
domains, and choosing the best strategy for each domain in
any direction would solve 483 problems (32 more). So better
criteria to choose flaws could solve more problems than B.
CGr is the best strategy in many domains in all direc-

tions despite solving fewer problems in total. It favours
flaws in the variables more causally related to goals,
useful in blocksworld , data-network , depots , pathways ,
pipesworld , scanalyzer , snake and storage .

The impact of computing sequence flaws is huge, as
shown in Table 2 (much larger build time). It is larger in do-
mains with long plans like airport and agricola , since more
splits must be computed in each refinement step for those. It
is also larger in strategies that enlarge the abstract plan, like
ref, and lower in strategies that do not need to compute the
splits in all states: last and clo, with the drawback of Dclo

computing and comparing flaws in both directions.
A good metric to compare heuristics is the expansions un-

til the last f -layer, since this shows how good the heuristic
is during the search. This is shown in Figure 2. Fit is bet-
ter than F and a bit worse than B, since most points are
above the diagonal in the first plot and below in the second
one. An interesting insight is that Fit is much better in ex-
pansions than Bit, despite solving one fewer problem. BCGr,

the second-best backward sequence strategy, is very similar
in expansions to B, so the difference in coverage is mostly
caused by the larger time required to build abstractions.

Table 2 shows statistics to analyze the behaviour of each
strategy. Per-domain details are omitted for space reasons.

One interesting observation is how many times the cost
of the abstract plan increased, since this describes the pref-
erences of each strategy for refining states: strategies that
increase the cost of the abstract plan many times are focused
on getting the actual plan, while strategies with few incre-
ments are focused in increasing the h value of other states.
ref improves the cost more often in almost all domains,
though it gets a lower total improvement due to parcprinter .
Results vary on the domain, but it has the largest number
of increments for progression flaws, and CG and cost get
more improvements than last, clo and CGr. So ref tries
to increase the plan length while last, clo and CGr per-
form width-like refinements. it refines close to the goal but
enlarging the plan, so its refinements are very useful. A simi-
lar behaviour is observed in the tasks solved during the loop,
where F , Fref, Blast and DCG are the best strategies, but it is
not equivalent because refining closer to s0 is more relevant
for this than increasing the cost.

Another interesting point is the total number of refine-
ments, an indicator of the number of states of the abstraction
and a proxy for the density of transitions because the loop



ends when it has 10M non-looping transitions. The results
vary on the domain, but cost, ref and CG are the strategies
with the highest number of refinements, while CGr, last
and clo are the strategies with fewest refinements.

Two related features are the total number of flaws and the
percentage of states with a flaw in an abstract plan. The first
one is correlated with the length of the plan, as the more
states in the abstract plan, the more flawed states can exist.
The second feature is inversely correlated to the former, as
the shorter the plan, the more likely it is to have flaws in a
larger percentage of the states. ref has the largest number
of flawed states and the lowest percentage of flawed states
because its plans are the longest ones. But the behaviour
per domain varies, and CGr has a low number of flawed
states overall but many more flaws than the rest in elevators ,
hiking , micomic and rovers . CGr, last and clo have the
largest percentage of flawed states due to their shorter plans.

The last analysis is the relative position of the refined state
with respect to the plan length. That is, 0% means the initial
state and 100% means the goal state, while in a plan of 3
states the state of the middle would be the 50%, and so on.
The average in the total of domains is dominated by Fit,
though Flast and Dclo are close and they win in some do-
mains. It may seem strange that Dclo refines states less close
to the goal, but the abstract plans found in each iteration de-
pend on previous refinements, so refining a state closest to
the goal can lead to not finding flaws as close in the next
steps. The values seem low but, as their plans are short, not
finding flaws in the last states greatly decreases the average.

Additive Abstraction Experiments
Table 3 shows in how many domains each strategy performs
better and the coverage for additive abstractions via satu-
rated cost partitioning (Seipp, Keller, and Helmert 2020).

The best strategy is Dadd
ref , which solves 4 more problems

than Badd and 14 more problems than F add. Dadd
clo solves

only one problem less, and it is better than other strategies
in more domains. Badd

ref solves the same number of problems,
and it is better than Badd in 2 domains and worse in only one.
F add
it is the best forward strategy, solving 12 more problems

than F add and even 2 more problems than Badd.
507 tasks can be solved by choosing the best forward

strategy in each domain, despite being worse separately.
Sequence flaws are more useful in additive abstractions

than in a single abstraction, as regression flaws turned out to
be not so good in partitioned problems.

No solution is found in the loop because the problem is
partitioned, but all other statistics can be compared. The time
to build abstractions is very low because tasks and transition
limits are smaller. Overall, all features are lower, despite get-
ting better heuristics. The behaviour among strategies is like
for a single abstraction with small differences.

Related Work
Model Checking is an area which aims to automatically ver-
ify the correctness of programs. In symbolic model check-
ing, the transition relation of a system is represented with a
first-order logic formula. A program is incorrect if the error

location is reachable (McMillan 2005; Vizel and Grumberg
2009). CEGAR is one of the most successful techniques in
Model Checking, and it was the inspiration for the use of
CEGAR in Classical Planning (Hajdu and Micskei 2020;
Löwe 2017; Albarghouthi 2015; Seipp and Helmert 2013).

Our work is inspired by sequence interpolation ap-
proaches in the context of model checking (McMillan 2005;
Albarghouthi 2015). Craig interpolants are a well-known
technique to prove the unreachability of a formula in sym-
bolic model checking. Given a pair of formulas (A,B), such
that A∧B is inconsistent, an interpolant for (A,B) is a for-
mula Â such that A implies Â, Â∧B is unsatisfiable, and Â
refers to the common symbols of A and B (McMillan 2005).

This idea can be generalized to sequences of formulas.
Given a sequence of formulas Γ = A1, . . . , An, Â0, . . . , Ân

is an interpolant for Γ when (i) Â0 = ⊤ and Ân = ⊥ and
(ii) for all 1 ≤ i ≤ n, Âi−1 ∧ Ai implies Âi and (iii) for all
1 ≤ i < n, Âi ∈ (L(A1, . . . Ai) ∩ L(Ai+1 . . . An)).

Note the similarity of sequence interpolants and sequence
flaws: ri Cartesian sets are similar to Ai, and sequence flaws
would be the equivalent to interpolants. But significant dif-
ferences exist, as we execute the abstract plan in a relaxed
way so our flaws are incomparable to such interpolants.

In the context of planning, some works explore how to
conduct CEGAR in different ways (Seipp and Helmert 2018;
Eifler and Fickert 2018), or how to combine multiple ab-
stractions via cost partitioning (Seipp 2017). The closest
work is the refinement strategies by (Speck and Seipp 2022),
which also identifies multiple flaws, but focusing on finding
flaws from multiple abstract plans instead of only one.

Another topic in planning with similarities to our work
is Partial-Order Causal-Link planning (Penberthy and Weld
1992; Younes and Simmons 2003; Bercher 2021), which re-
fines partial plans by detecting flaws in them. In this case,
flaws can be an open precondition not protected by a causal
link or an operator that can delete a precondition before it
is needed. Open preconditions are fixed adding a causal link
and threats are fixed moving the operator before the variable
is produced or after the operator that needs it. Multiple flaws
exist at each step of the refinement loop and the flaw selec-
tion is critical to reduce the steps required to get a correct
plan, but the flaws and the refinements are different.

Conclusions
CEGAR is a method to iteratively refine abstractions by
identifying flaws in optimal abstract plans. But previous
work find a single flaw per plan, the first one along its ex-
ecution. Our main contribution is a new type of flaw that
allows searching flaws after the first one. This enables iden-
tifying flaws that could not be found otherwise, and it opens
research opportunities for new refinement strategies.

We have experimentally shown that different selection
flaw strategies result in very different behaviour, and that
each strategy is better than the others in some domains. We
have also shown that iterative strategies and strategies based
on the most refined state can get better heuristics than re-
gression flaws, especially in additive abstractions, opening
research opportunities for smarter flaw selection strategies.



F Flast Fref Fcost FCG FCGr Fit Cov

F∗ 13 12 12 23 19 14 14 507

F – 5 1 4 11 7 5 479
Flast 6 – 5 8 14 11 3 487
Fref 5 5 – 4 12 10 7 483
Fcost 8 7 4 – 9 10 9 478
FCG 6 6 4 4 – 7 5 456
FCGr 5 6 4 5 9 – 7 466
Fit 6 6 7 9 14 10 – 491

BBlast Bref Bcost BCG BCGr BCGr Cov

B∗ 8 13 7 9 16 10 10 500

B – 7 1 3 12 7 0 489
Blast 1 – 0 3 10 4 1 477
Bref 2 6 – 4 13 8 2 492
Bcost 2 7 1 – 11 8 2 487
BCG 1 5 1 1 – 5 1 458
BCGr 4 6 5 5 9 – 4 474
Bit 0 7 1 3 12 7 – 489

DDlast Dref Dcost DCG DCGr Dit Dclo Cov

D∗ 15 15 8 8 18 11 11 8 502

D – 7 0 5 12 10 1 1 492
Dlast 0 – 0 3 9 7 0 0 476
Dref 1 8 – 5 12 10 2 2 493
Dcost 5 9 4 – 12 10 5 5 491
DCG 3 6 3 3 – 8 2 2 458
DCGr 6 7 5 5 10 – 6 6 466
Dit 2 9 2 5 13 12 – 0 492
Dclo 9 9 2 5 13 12 0 – 492

Table 3: Per-domain coverage for additive abstractions. The ∗ variant is the best strategy at each domain.

Acknowledgments
This work was partially funded by grant PID2021-127647NB-C21
from MCIN/AEI/10.13039/501100011033, by the ERDF “A way
of making Europe”, and by the Madrid Government under the Mul-
tiannual Agreement with UC3M in the line of Excellence of Uni-
versity Professors (EPUC3M17) in the context of the V PRICIT
(Regional Programme of Research and Technological Innovation).
This work has been supported by the Otto Mønsted foundation.

References
Albarghouthi, A. 2015. Software Verification with Program-Graph
Interpolation and Abstraction. Ph.D. thesis, University of Toronto,
Canada.
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R. 2013.
Revisiting Regression in Planning. In Proc. IJCAI 2013, 2254–
2260.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for SAS+

Planning. Computational Intelligence, 11(4): 625–655.
Ball, T.; Podelski, A.; and Rajamani, S. K. 2001. Boolean and
Cartesian Abstraction for Model Checking C Programs. In Proc.
TACAS 2001, 268–283.
Bercher, P. 2021. A Closer Look at Causal Links: Complexity Re-
sults for Delete-Relaxation in Partial Order Causal Link (POCL)
Planning. In Proc. ICAPS 2021, 36–45.
Blum, A.; and Furst, M. L. 1997. Fast Planning Through Planning
Graph Analysis. AIJ, 90(1–2): 281–300.
Dechter, R.; and Pearl, J. 1985. Generalized Best-First Search
Strategies and the Optimality of A∗. JACM, 32(3): 505–536.
Edelkamp, S. 2001. Planning with Pattern Databases. In Proc. ECP
2001, 84–90.
Eifler, R.; and Fickert, M. 2018. Online Refinement of Cartesian
Abstraction Heuristics. In Proc. SoCS 2018, 46–54.
Hajdu, Á.; and Micskei, Z. 2020. Efficient Strategies for CEGAR-
Based Model Checking. Journal of Automated Reasoning, 64(6):
1051–1091.
Helmert, M. 2004. A Planning Heuristic Based on Causal Graph
Analysis. In Proc. ICAPS 2004, 161–170.
Helmert, M. 2006. The Fast Downward Planning System. JAIR,
26: 191–246.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating Lower
Bounds in Factored State Spaces. JACM, 61(3): 16:1–63.
Kreft, R.; Büchner, C.; Sievers, S.; and Helmert, M. 2023. Com-
puting Domain Abstractions for Optimal Classical Planning with
Counterexample-Guided Abstraction Refinement. In Proc. ICAPS
2023.

Löwe, S. 2017. Effective Approaches to Abstraction Refinement
for Automatic Software Verification. Ph.D. thesis, University of
Passau, Germany.
McMillan, K. L. 2005. Applications of Craig Interpolants in Model
Checking. In Lecture notes in computer science, 1–12.
Penberthy, J. S.; and Weld, D. S. 1992. UCPOP: A Sound, Com-
plete, Partial Order Planner for ADL. In Proc. KR 1992, 103–114.
Pozo, M.; Torralba, Á.; and Linares López, C. 2024. Gotta
Catch ’Em All! Sequence Flaws in CEGAR for Classical Planning.
Supplementary Material, Code, Experimental Results and Scripts.
10.5281/zenodo.11173882.
Pozo, M.; Torralba, Á.; and Linares López, C. 2024. When CE-
GAR Meets Regression: A Love Story in Optimal Classical Plan-
ning. In Proc. AAAI 2024, 20238–20246.
Rintanen, J. 2008. Regression for Classical and Nondeterministic
Planning. In Proc. ECAI 2008, 568–572.
Rovner, A.; Sievers, S.; and Helmert, M. 2019. Counterexample-
Guided Abstraction Refinement for Pattern Selection in Optimal
Classical Planning. In Proc. ICAPS 2019, 362–367.
Seipp, J. 2017. Better Orders for Saturated Cost Partitioning in
Optimal Classical Planning. In Proc. SoCS 2017, 149–153.
Seipp, J.; and Helmert, M. 2013. Counterexample-guided Carte-
sian Abstraction Refinement. In Proc. ICAPS 2013, 347–351.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided Carte-
sian Abstraction Refinement for Classical Planning. JAIR, 62: 535–
577.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost Parti-
tioning for Optimal Classical Planning. JAIR, 67: 129–167.
Seipp, J.; von Allmen, S.; and Helmert, M. 2020. Incremental
Search for Counterexample-Guided Cartesian Abstraction Refine-
ment. In Proc. ICAPS 2020, 244–248.
Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A Composi-
tional Theory of Transformations of Factored Transition Systems.
JAIR, 71: 781–883.
Smaus, J.-G.; and Hoffmann, J. 2009. Relaxation Refinement: A
New Method to Generate Heuristic Functions. In Proc. MoChArt
2008, 147–165.
Speck, D.; and Seipp, J. 2022. New Refinement Strategies for
Cartesian Abstractions. In Proc. ICAPS 2022, 348–352.
Torralba, Á.; Seipp, J.; and Sievers, S. 2021. Automatic Instance
Generation for Classical Planning. In Proc. ICAPS 2021, 376–384.
Vizel, Y.; and Grumberg, O. 2009. Interpolation-sequence based
model checking. In Proc. FMCAD 2009, 1–8.
Younes, H. L. S.; and Simmons, R. G. 2003. VHPOP: Versatile
Heuristic Partial Order Planner. JAIR, 20: 405–430.


