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Abstract

The merge-and-shrink framework is a powerful tool for con-
structing state-of-the-art admissible heuristics in classical
planning. Recent work has begun generalizing the complex
theory behind this framework to probabilistic planning in
forms of Stochastic Shortest-Path Problems (SSPs). There
however remain two important gaps. Firstly, although the pre-
vious work makes substantial efforts, the probabilistic merge-
and-shrink theory is still incomplete, lacking in particular
prune transformations, i.e., transformations discarding unin-
teresting states effectively reducing the size of the abstrac-
tion without losing relevant information. Secondly, an actual
implementation and experimental evaluation of the merge-
and-shrink framework for SSPs is so far missing. Here, we
round off the previous work by contributing both a theoreti-
cal analysis of prune transformations, as well as an empirical
evaluation of merge-and-shrink heuristics. Our results show
that merge-and-shrink heuristics are highly competitive with
or even outperform previous single abstraction heuristics, but
they do not quite reach the performance of state-of-the-art ad-
ditive combinations of such heuristics yet.

1 Introduction
Fully observable probabilistic planning is commonly viewed
as a stochastic shortest path (SSP) problem (Bertsekas and
Tsitsiklis 1991), where one aims to find a policy that guar-
antees achieving the goal with the lowest expected cost pos-
sible. The current state of the art for solving SSPs opti-
mally is using SSP heuristic search algorithms (e.g., Hansen
and Zilberstein 2001) guided with admissible probabilistic-
abstraction heuristics (Trevizan, Thiébaux, and Haslum
2017; Klößner et al. 2021; Klößner and Hoffmann 2021).
Such abstraction heuristics derive lower bounds on the ex-
pected cost-to-goal by abstracting the SSP, collapsing to-
gether states so to make an exhaustive analysis feasible. In
recent years, many different methods have been proposed
to generate such abstractions automatically, the roots typ-
ically going back to classical (deterministic) planning, in-
cluding pattern databases (Edelkamp 2001; Haslum et al.
2007; Klößner and Hoffmann 2021; Klößner et al. 2022)
and counterexample-guided cartesian abstractions (Seipp
and Helmert 2018; Klößner, Seipp, and Steinmetz 2023).

Merge-and-shrink abstractions have also received sig-
nificant attention in classical planning research (Helmert,
Haslum, and Hoffmann 2007; Helmert et al. 2014; Helmert,

Röger, and Sievers 2015; Sievers and Helmert 2021). Merge-
and-shrink describes a generic framework for constructing
highly informative abstractions, which is based on a factored
representation of transition systems and operations manip-
ulating this representation, called transformations (Sievers
and Helmert 2021). Merge-and-shrink guarantees construct-
ing admissible abstraction heuristics, as long as only trans-
formations are used which preserve specific compositional
properties, regardless of their order of application.

Recently, this framework has been generalized to proba-
bilistic planning (Klößner et al. 2023), by defining a suit-
able factored representation for probabilistic transition sys-
tems alongside suitable extensions of the core transforma-
tions: merge, shrink, and label reduction transformations.
Klößner et al. showed that these transformations preserve
compositional properties needed to guarantee correctness
of the abstraction construction. However, two gaps remain
open. On the one hand, the theory by Klößner et al. did
not cover prune transformations, which remove uninterest-
ing (e.g., unreachable) states from the abstraction, effec-
tively reducing the size of the abstraction without harming
informativeness of the resulting abstraction heuristic. On the
other hand, they provide no implementation and no empir-
ical evaluation, so the practical applicability of this type of
abstraction remains unknown.

In this paper, we round off the previous work. We for-
mally introduce prune transformations, which in general
no longer preserve the admissibility guarantee of the con-
structed heuristic. Nevertheless, we derive sufficient condi-
tions for admissibility, and furthermore show that it suffices
to preserve admissibility on alive states, (i.e., states that are
part of a policy which guarantees to reach the goal with cer-
tainty), in order for standard SSP heuristic search algorithms
to retain their completeness and optimality guarantees. We
derive prune transformations that help to detect non-alive
states, strengthening the heuristic, while preserving the op-
timality guarantee of the heuristic search.

Moreover, we implemented the merge-and-shrink frame-
work, including merge, shrink, label reduction and prune
transformations. We compare merge-and-shrink heuristics
against other state-of-the-art abstraction heuristics for prob-
abilistic planning. Our experiments show that this frame-
work can derive informative heuristics, competitive with
both PDB heuristics and cartesian abstraction heuristics.



2 Background
We make use of the following notation. The domain X of
a function f : X → Y is denoted by dom(f). A partial
function f : X ⇀ Y is a function such that dom(f) ⊆ X .
A function δ : X ′ → [0, 1] is (sub-) stochastic over X ⊆ X ′,
iff

∑
x∈X δ(x) = 1 (resp. ≤ 1). The set of such functions is

denoted Dist(X) (resp. SubDist(X)). We define supp(δ) :=
{x ∈ X | δ(x) > 0} as the support of δ ∈ SubDist(X).

Probabilistic Transition Systems
A probabilistic transition system (abbreviated TS) is a tuple
Θ = ⟨SΘ, LΘ, CΘ, TΘ, IΘ, GΘ⟩, where SΘ is a set of states,
LΘ is a set of action labels, CΘ : LΘ → R+

0 is a label cost
function, TΘ ⊆ SΘ×LΘ×Dist(SΘ) is a set of probabilistic
transitions, IΘ ⊆ SΘ is the set of initial states and GΘ ⊆
SΘ is the set of goal states. All sets are finite. For a state s ∈
SΘ, we define TΘ(s) := {⟨s, ℓ, δ⟩ ∈ TΘ}. For convenience,
we write CΘ(t) := CΘ(ℓ) for the cost and δt := δ for the
successor distribution of a transition t = ⟨s, ℓ, δ⟩ ∈ TΘ.

An (in-)finite path of Θ is an (in-)finite alternating se-
quence p = s0t0 . . . of states si ∈ SΘ and transitions
ti ∈ TΘ for all valid indices i. If p is a finite path, p is
alternatively denoted as a history, and must end in a state
last(p). The set of all histories is denoted Hist(Θ).

Usually, stationary and deterministic (SD in short) poli-
cies π : SΘ ⇀ TΘ are used in the context of SSPs to
model an agent who selects a transition π(s) (if any) to ex-
ecute next only based on the current state of execution s ∈
SΘ. Unfortunately, such policies are not expressive enough
for our developments, as we will see later. We consider
history-dependent and stochastic policies π : Hist(Θ) →
SubDist(TΘ). If h is the execution history so far, π exe-
cutes the transition t next with probability π(h)(t), and ter-
minates with probability termπ(h) := 1 −

∑
t∈TΘ

π(h)(t).
Only transitions of the current state may be chosen, i.e.,
supp(π(h)) ⊆ TΘ(last(h)). Given a starting state s ∈ SΘ,
π induces a probability space over the paths (i.e., possible
executions) of Θ (Baier and Katoen 2008). The event space
is the σ-algebra generated by the cylinder sets Cyl(h) :=
{p | h is a prefix of p}, for h ∈ Hist(Θ). The probabil-
ity measure Prπs is the unique extension of the pre-measure
P[Cyl(s0 . . . sn)] := [s0 = s] ·

∏n−1
i=0 π(s0 . . . si)(ti) ·

δti(si+1) (defined using Iverson brackets) to the full σ-
algebra. In particular, the probability of a set of histories
E ⊆ Hist(Θ) is given by the countable sum Prπs [E] =∑

h∈E Prπs [Cyl(h)] · termπ(h).
A policy π solves s ∈ SΘ for the target states T ⊆ SΘ

if Prπs [FinishΘ(T )] = 1, where FinishΘ(T ) := {h ∈
Hist(Θ) | last(h) ∈ T}. The set of such solutions is de-
noted by SolsΘ(s, T ). The expected cost-to-goal of π ∈
SolsΘ(s,GΘ) for a starting state s is defined as Jπ

Θ(s) :=

Eπ
s [Cost], where Cost(s0t0 . . . sn) :=

∑n−1
i=0 CΘ(ti) is a

random variable measuring the accumulated cost of an ex-
ecution. The optimal expected cost-to-goal of s is defined
as J∗Θ(s) := infπ∈SolsΘ(s,GΘ) J

π
Θ(s). A solution π⋆ ∈

SolsΘ(s,GΘ) is optimal for s ∈ SΘ if Jπ
Θ(s) = J∗Θ(s). We

want to find an optimal initial state s0 ∈ argmins∈IΘ J∗Θ(s)
and an optimal policy for s0, if they exist.

The Merge-and-Shrink Framework
A heuristic is a function h : SΘ → R+

0 ∪ {∞}. h is ad-
missible if h(s) ≤ J∗Θ(s) holds for all states s ∈ SΘ,
goal-aware if h(s) = 0 for goal states s ∈ GΘ, consis-
tent if for every transition ⟨s, ℓ, δ⟩ ∈ TΘ it holds that h(s) ≤
CΘ(ℓ) +

∑
t∈SΘ

δ(t) · h(t) and finally safe if h(s) ̸= ∞ for
every state s such that SolsΘ(s,GΘ) ̸= ∅. Every heuristic
that is consistent, goal-aware, and safe is also admissible.

The probabilistic merge-and-shrink framework applies
transformations on a factored representation of a TS, a
so-called annotated transition system (ATS; Klößner et al.
2023). Adding a set of initial states for our developments,
an ATS is a tuple A = ⟨SA, LA, CA, EA, DA, TA, IA, GA⟩.
Here, EA is a finite set of label effects, DA : LA →
Dist(EA) maps each label to a probability distribution over
possible effects and TA ⊆ SA × LA × (EA ⇀ SA) con-
sists of annotated transitions ⟨s, ℓ, α⟩ ∈ TA associating
each possible effect e ∈ supp(DA(ℓ)) of ℓ with a succes-
sor state α(e) ∈ SA. An ATS is able to distinguish be-
tween different outcomes of an action leading to the same
state. Dropping this information simplifies A to an ordinary
TS Θ(A) := ⟨SA, LA, CA, TΘ(A), IA, GA⟩ where TΘ(A) :=
{⟨s, ℓ, t 7→

∑
e∈α−1(t) DA(ℓ)(e)⟩ | ⟨s, ℓ, α⟩ ∈ TA}. In

Θ(A), the probability of a successor is the total probability
of all label effects leading to this successor.

The framework maintains a factored ATS, which is a
tuple F = ⟨Ai⟩i∈I of ATSs (its factors) where I is some
finite index set. All factors have the same label set LF ,
effects EF , effect probabilities DF and label costs CF .
Such a factored ATS is an implicit representation of the
synchronized product over its factors defined as

⊗
F :=

⟨×i∈I SAi
, LF , CF , EF , DF , T⊗

F ,×i∈I IAi
,×i∈I GAi

⟩,
with T⊗

F := {⟨⟨si⟩i∈I , ℓ, e 7→ ⟨αi(e)⟩i∈I⟩ | ∀i ∈
I. ⟨si, ℓ, αi⟩ ∈ TAi

}. The factors representing an ATS of in-
terest can be constructed from a probabilistic finite-domain
representation (Trevizan, Thiébaux, and Haslum 2017).

Klößner et al. frame merge-and-shrink as a series of trans-
formations from one factored ATS into another. A (non-
annotated) TS transformation is a tuple τ = ⟨Θ,Θ′, σ, λ⟩,
where Θ is the concrete TS, Θ′ is the transformed TS,
σ : SΘ ⇀ SΘ′ is a state mapping and λ : LΘ ⇀ LΘ′

is a label mapping. τ induces the transformation heuristic
hτ (s) = J∗Θ′(σ(s)) for s ∈ dom(σ) and hτ (s) = ∞ else.

To prove properties like goal-awareness for hτ , one can
argue about structural properties of τ . To this end, one can
extend the state mapping σ to a state distribution mapping
σDist : Dist(dom(σ)) → Dist(SΘ′) defined by σDist(δ) :=
s′ 7→

∑
s∈σ−1(s′) δ(s). Together, σ, λ and σDist give rise

to the induced transition mapping indτ : TΘ ∩ (dom(σ) ×
dom(λ)×dom(σDist)) → (SΘ′×LΘ′×Dist(SΘ′)) given by
indτ (⟨s, ℓ, δ⟩) := ⟨σ(s), λ(ℓ), σDist(δ)⟩. With this, Klößner
et al. define the following conservativeness properties:

CONSS σ is total on SΘ

CONSL λ is total on LΘ

CONSC ∀ℓ ∈ dom(λ). CΘ′(λ(ℓ)) ≤ CΘ(ℓ)

CONST indτ (TΘ) ⊆ TΘ′

CONSG σ(GΘ) ⊆ GΘ′



Furthermore, they introduce the inducedness properties
INDS+L+C+T+G and the refinedness properties REFC+T+G,
but we omit their detailed definitions here as we will not
deal with them on a formal level. All of these properties are
compositional: If two transformations τ = ⟨Θ,Θ′, σ, λ⟩ and
τ ′ = ⟨Θ′,Θ′′, σ′, λ′⟩ satisfy the property, then their com-
position τ ′ ◦ τ := ⟨Θ,Θ′′, σ′ ◦ σ, λ′ ◦ λ⟩ also satisfies the
property. It holds that for every conservative transformation
τ , i.e., τ ∈ CONSS+L+C+T+G, the heuristic hτ is goal-aware,
consistent and safe, and therefore admissible. On the other
hand, if τ is refined, i.e., τ ∈ REFC+T+G, then hτ is pes-
simistic, i.e., hτ ≥ J∗Θ. Lastly, if a transformation is exact,
i.e., conservative and refined, then hτ = J∗Θ is perfect.

Since the underlying TS is only implicitly represented by
a factored ATS F = ⟨Ai⟩i∈I , merge-and-shrink transforma-
tions must be specified on this representation instead. To this
end, a factored mapping (FM) from F to a set D is a function
σ : S⊗

F ⇀ D that is either an atomic FM Atom[i, α] :=
α(s(i)) for some factor index i ∈ I and α : SAi ⇀ D,
or a merge FM Merge[σL, σR, α] := α(σL(s), σR(s)) for
the child FMs σL : S⊗

F ⇀ DL, σR : S⊗
F ⇀ DR and

α : DL ×DR ⇀ D. A factored-to-factored (F2F) mapping
from F to another factored ATS F ′ = ⟨Aj⟩j∈J is a tuple
Σ = ⟨σj⟩j∈J of FMs σj from F to SAj

, representing the
function JΣK : S⊗

F → S⊗
F ′ , JΣK(s) := ⟨σj(s)⟩j∈J .

A factored transformation is a tuple ⟨F, F ′,Σ, λ⟩ where
F is the original factored ATS, F ′ is the transformed
factored ATS, Σ is a F2F mapping from F to F ′ and
λ : LF ⇀ LF ′ is a label mapping. Such a factored
transformation implicitly represents the TS transformation
⟨Θ(

⊗
F ),Θ(

⊗
F ′), JΣK, λ⟩ between the represented tran-

sition systems of F and F ′. Via this association, properties
like CONSS are said to hold for a factored transformation,
if they hold for this corrresponding TS transformation.

3 Revisiting SSP Heuristic Properties

In forward heuristic search, one will only ever encounter
states reachable from the initial state. For the completeness
and optimality properties of the search, the behavior of the
heuristic on unreachable states is hence irrelevant. Classical
planning literature has exploited this observation through ac-
cording relaxations of heuristic properties like admissibility,
which allowed constructing higher quality heuristics (Fišer,
Horčı́k, and Komenda 2020; Sievers and Helmert 2021).
Here, we generalize these ideas to SSP heuristic search.

Before introducing our novel heuristic properties, we need
some additional notation. In the following, let Θ be a TS, let
π be a policy, and let S ⊆ SΘ and T ⊆ SΘ be a set of start
and target states, respectively. We write s

π
; t if and only if

Prπs [Cyl(h)] > 0 for some history h ∈ FinishΘ({t}), and
s ; t if and only if s π

; t for some policy π. With this,
the states forward reachable from S and backward reach-
able from T under π are denoted Reach→Θ,π(S) := {t | ∃s ∈
S. s

π
; t} and Reach←Θ,π(T ) := {s | ∃t ∈ T. s

π
; t}

respectively. Likewise, the set of all forward respectively
backward reachable states are denoted Reach→Θ (S) := {t |
∃s ∈ S. s ; t} and Reach←Θ (T ) := {s | ∃t ∈ T. s ; t}.

The set of dead ends for the targets T is given by
DeadΘ(T ) := SΘ \ Reach←Θ (T ), and denotes states which
cannot reach T under any circumstance. A state s is solv-
able for T if SolsΘ(s, T ) ̸= ∅. The set of states solvable for
T is denoted SolvΘ(T ). There can be states which are nei-
ther solvable nor dead ends for T . Lastly, we say that a state
s′ is alive for S and T , if there is a state s ∈ S and a solution
π ∈ SolsΘ(s, T ) such that s π

; s′. The set of all states alive
for S and T is given by AliveΘ(S, T ). All alive states are
forward reachable from S and solvable, as π ∈ SolsΘ(s, T )
and s

π
; s′ implies π ∈ SolsΘ(s′, T ). Yet, not every forward

reachable and solvable state is necessarily alive.
The sets Reach→Θ (S) and Reach←Θ (T ) can be computed

by running a simple exhaustive forward/backwards explo-
ration of Θ. SolvΘ(T ) can be computed by iteratively prun-
ing dead ends (Baier and Katoen 2008). To this end, the pro-
jection of Θ onto a state set K ⊆ SΘ is given by Θ|K :=
{K,LΘ, TΘ∩ (K×LΘ×Dist(K)), CΘ, IΘ∩K,GΘ∩K}.
Starting with Θ0 := Θ, one iteratively computes the TS
Θi+1 := Θi|Reach←Θi

(T ) until Θi+1 = Θi. The solvable
states are the remaining states of the final transition system
Θk. Furthermore, we have AliveΘ(S, T ) = Reach→Θk

(S).
In the following, we mostly use the above definitions with

respect to the set of source states S = IΘ and the target
states T = GΘ in the context of a TS Θ. We therefore
use the corresponding shorthand notations Reach→(Θ) :=
Reach→Θ (IΘ) and Reach←(Θ) := Reach←Θ (GΘ), and anal-
ogously Dead(Θ), Solv(Θ) and Alive(Θ).

Example 1. In the transition system Θ depicted in Fig. 1, we
can see that Reach→(Θ) = {s0, s1, s2, s3, s4, s5, s6, s9}
and Dead(Θ) = {s5, s8}. To determine the solvable states
of Θ, we first compute Θ1 = Θ|Reach←(Θ), which is the TS
from which the dead ends of Θ and transitions leading to
them are removed (drawn with dotted lines in Fig. 1). Re-
peating the procedure, we next prune the new dead end s2
and the transitions leading to s2 (drawn with dashed lines)
to obtain Θ2. Finally, Θ2 contains no dead ends, so the algo-
rithm terminates with the set of solvable states Solv(Θ) =
SΘ2

= {s0, s1, s3, s4, s6, s7, s9}. In particular, s2 is neither
solvable nor a dead end, as we can reach the goal from s2,
but not with certainty. The set of alive states for s0 can be
computed as Alive(Θ) = Reach→(Θ2) = {s0, s3, s4, s9}.
In particular, the states s1 and s6 are forward reachable
from s0 and solvable, but not alive for s0, because no so-
lution for s0 can reach these states. Note that s9 can be
reached by the history-dependent solution that first goes to
s9 from s0 and behaves like an SD solution for s9 afterwards
for histories of length ≥ 1. However, an SD policy reaching
s9 from s0 cannot be a solution, as it will produce an infinite
cycle due to repeating the same choice in s0 regardless of
the history. Since s9 would also be alive from the view of the
classical theory in the deterministic TS Θ|{s0,s3,s4,s9}, this
means we would not obtain a proper generalization of this
concept if we only considered SD policies.

As in classical planning, SSP heuristic search algorithms
retain their correctness properties regardless of the heuristic
estimates for unreachable states. It however turns out that for
SSPs, one can even further relax the heuristic properties.
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Figure 1: Transition system used in Example 1.

Definition 1. Let Θ be a TS and let h : SΘ → R ∪ {∞} be
a heuristic. We say that h is alive-

(i) goal-aware if h(s) = 0 for all s ∈ Alive(Θ) ∩GΘ

(ii) consistent if h(s) ≤ CΘ(ℓ)+
∑

t∈SΘ
δ(t) ·h(t) for all

⟨s, ℓ, δ⟩ ∈ TΘ ∩Alive(Θ)× LΘ × Dist(Alive(Θ))
(iii) safe if h(s) ̸= ∞ for all s ∈ Alive(Θ)
(iv) admissible if h(s) ≤ J∗Θ(s) for all s ∈ Alive(Θ)
(v) perfect if h(s) = J∗Θ(s) for all s ∈ Alive(Θ) and

h(s′) = ∞ for all s′ /∈ Solv(Θ) such that there exists
⟨t, ℓ, δ⟩ ∈ TΘ with t ∈ Alive(Θ) ∧ s′ ∈ supp(δ)

As usual, the heuristic value h(s) = ∞ is used to sig-
nal the search to discard s from consideration. For alive-
perfection (v), we want the heuristic to effectively restrict
the search to the alive states only, which is guaranteed if the
unsolvable successors of alive states are detected as such.
When pruned, beyond those unsolvable states, no other non-
alive states will be visited, making their heuristic estimate
irrelevant. Note that, as is the case for the unrestricted ver-
sions, if a heuristic is alive-admissible, it is also alive-goal-
aware and alive-safe. If a heuristic is alive-goal-aware, alive-
safe, and alive-consistent, then it is alive-admissible. If a
heuristic is alive-perfect, then it satisfies also all the other
properties. Importantly, the alive properties leave the cor-
rectness properties of heuristic search intact:

Theorem 1. Let A be an optimal SSP heuristic search al-
gorithm, and let h be the heuristic used in the search. If h
is alive-safe, then A guarantees to return a solution for I ,
if one exists. If h is alive-admissible, then A guarantees to
return an optimal solution for I , if a solution exists.

Proof. Pruning non-alive states does by definition not af-
fect the space of possible solutions, which suffices for the
first part of the claim. Regarding the second part, if the al-
gorithm guarantees to find an optimal solution with an ad-
missible heuristic, the algorithm will also find an optimal
solution if we make all suboptimal choices look worse than
they actually are; intuitively, this can possibly only make the
optimal choices look better. As h may be inadmissible only
for states not part of any solution, h can hence only result in
pessimistic estimations of suboptimal choices, concluding
the proof.

Our Theorem applies to most popular heuristic search al-
gorithms for SSPs, including LAO∗ (Hansen and Zilberstein
2001), LRTDP (Bonet and Geffner 2003), and idual (Tre-
vizan, Teichteil-Königsbuch, and Thiébaux 2017).

4 A Theory of Prune Transformations
In the following, we define prune transformations on a fac-
tored ATS and characterize them in the context of the heuris-
tic properties introduced in the previous section. We start by
defining a pruning operation on a single annotated TS.
Definition 2. Let A be an ATS and let K ⊆ SA be a
set of kept states. The pruned ATS A|K for A and K
is defined as A|K := {K,LA, CA, EA, DA, TA|K , IA ∩
K,GA ∩ K}, where TA|K := {⟨s, ℓ, α⟩ ∈ TA | s ∈
K ∧ α(supp(DA(ℓ))) ⊆ K}.

It is easy to see that Θ(A)|K = Θ(A|K), i.e., it is unim-
portant whether we first prune states from an ATS and then
translate it to its corresponding non-annotated transition sys-
tem, or if we do this translation first and prune afterwards.
With this, we formally define prune transformations on a
factored ATS, which are transformations that prune states
from a specific factor of the factored ATS.
Definition 3 (Prune Transformations). Let F = ⟨Ai⟩i∈I be
a factored ATS. Let k ∈ I be an index and let K ⊆ SAk

.
Lastly, let idX be the identity function for domain X . The
prune transformation for Ak and K is the factored transfor-
mation ⟨F, ⟨A′i⟩i∈I , ⟨σi⟩i∈I , idLF

⟩ where

A′i :=

{
Ai i ̸= k

Ai|K i = k
σi :=

{
Atom(i, idSAi

) i ̸= k

Atom(i, idK) i = k

Since prune transformations essentially only discard some
states (and their transitions), they are induced, refinable, and
satisfy CONSL+T+C+G. However, they satisfy CONSS only
if K = ∅. In conclusion, they are generally not conservative,
and can lead to inadmissible transformation heuristics. To
nevertheless obtain sufficient criteria for admissibility and
other heuristic properties, we replace CONSS with weaker
properties inspired by the classical planning theory.
Definition 4. Let τ = ⟨Θ,Θ′, σ, λ⟩ be a TS transformation.
We define the following transformation properties on τ .
CONSI σ(IΘ) ⊆ IΘ′
CLOS AliveΘ(SΘ, dom(σ)) ⊆ dom(σ)
CLOSALV AliveΘ(IΘ, dom(σ)) ⊆ dom(σ)
KEEPG GΘ ⊆ dom(σ)
KEEPALV

G Alive(Θ) ∩GΘ ⊆ dom(σ)

The property CONSI was omitted by Klößner et al.
(2023) as it is not needed for reasoning about shrink and
merge transformations or label reduction. All the transfor-
mations defined in their work satisfy KEEPG and CLOS be-
cause they utilize a total state mapping, i.e., dom(σ) = SΘ.
It is also easy to see that they satisfy CONSI.

The property CLOS requires that, if a state s is able to
reach a set of kept states K ⊆ dom(σ) with probability one,
then s needs to be kept as well. For deterministic transition
systems, this property essentially guarantees that dom(σ) is
closed under predecessors, which matches the definition of
the corresponding property in the classical case. The prop-
erty CLOSALV is weaker and requires only that if there is a
policy that reaches a set of kept states K ⊆ dom(σ) with
certainty from an initial state, then all states reached by this
policy must also be kept. KEEPG requires that all goal states
are kept, whereas KEEPALV

G preserves only alive goal states.



Policy Transformation
In classical planning, when reasoning over transformations,
a re-occuring pattern is the need to simulate a concrete path
in the original TS Θ with a corresponding path of the trans-
formed TS Θ′. Such a simulation shows that a specific strat-
egy of an agent, as modelled by the concrete path, can be
simulated in Θ′. Before we can analyze the transformation
properties introduced above, we need to generalize this idea
for policies to be able to conduct proofs later on. All proofs
for claims made in this sub-section can be found in our tech-
nical report (Klößner et al. 2024).

To this end, let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation.
Analogous to the induced transition indτ (t) of a concrete
transition t, we define the induced history of h = s0t0 · · · ∈
Hist(Θ) as indτ (s0t0 . . . ) := σ(s0)indτ (t0) . . . , if si ∈
dom(σ) and ti ∈ dom(indτ ) for all valid indices i, and
undefined otherwise. This construction is essentially the
simulation of a concrete path used in classical planning.
To extend the simulation to policies we introduce the fol-
lowing construction, which uses the notation Cyl(ht) :=⋃
· s∈SΘ

Cyl(hts).

Definition 5. Let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation, let
π be a policy for Θ and let s ∈ SΘ be some starting state.
The transformed policy πτ,s of π for s is defined by

πτ,s(h
′)(t′) := Prπs [

⋃
·

h∈ind−1
τ (h′)

t∈ind−1
τ (t′)

Cyl(ht) |
⋃
·

h∈ind−1
τ (h′)

Cyl(h)]

if Prπs [
⋃
· h∈ind−1

τ (h′) Cyl(h)] > 0, else πτ,s(h
′)(t′) := 0.

Given a history h′ and transition t′, the construction above
calculates the conditional probability that π selects some
concrete transition t ∈ ind−1τ (t′) in the current time step,
under the condition that a concrete history h ∈ ind−1τ (h′)
was observed. Note that these probabilities depend on the
initial state s from which π is run. If no concrete history
h ∈ ind−1τ (h′) is possible, the policy terminates.

This construction has very convenient properties. Firstly,
πτ,s generates a prefix h′ in Θ′ with the same probability
that π generates some matching prefix h ∈ ind−1τ (h′), if
both are executed from the starting states σ(s) and s respec-
tively. Moreover, the probability that πτ,s produces some fi-
nite execution h′ matches the probability that π produces
some corresponding finite execution h ∈ ind−1τ (h′), or an
execution that starts with such a history and then continues
along a transition that does not induce an abstract transition
of Θ′. Formally, we have the following Lemma.
Lemma 1. Let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation, let
π be a policy and let s ∈ SΘ be a starting state with s ∈
dom(σ). For every abstract history h′ ∈ Hist(Θ′):

Pr
πτ,s

σ(s)[Cyl(h
′)] = Prπs

[⋃
·
h∈ind−1

τ (h′)
Cyl(h)

]
(1)

Pr
πτ,s

σ(s)[h
′] = Prπs

[
ind−1τ (h′)

]
+ Prπs

[⋃
·

h∈ind−1
τ (h′)

t/∈ind−1
τ (TΘ′ )

Cyl(ht)
]

(2)

Importantly, the transformed policy can be used to simu-
late a solution in Θ within Θ′. For each concrete state that

π reaches, πτ,s will then reach the corresponding abstract
state. To this end, we need to impose mild conservativeness
assumptions, and require that all states reachable by the orig-
inal policy are kept by the transformation.

Proposition 1. Let τ = ⟨Θ,Θ′, σ, λ⟩ ∈ CONSL+T and let
π be a policy. For all states s ∈ SΘ with Reach→Θ,π(s) ⊆
dom(σ) and every set of target states T ⊆ SΘ:

(i) Reach→Θ,πτ,s
(σ(s)) = σ(Reach→Θ,π(s)) and

(ii) If π ∈ SolsΘ(s, T ), then πτ,s ∈ SolsΘ′(σ(s), σ(T )).

Compositionality & Heuristic Guarantees
The construction we just introduced will be key for the
proofs given in the rest of the paper. First, we use it to prove
compositionality of the properties defined in Definition 4,
so they can be reasoned with in the context of the merge-
and-shrink framework. Since these properties are extensions
of their respective classical properties, we similarly have to
assume mild side conditions to prove compositionality.

Theorem 2. Let τ = ⟨Θ,Θ′, σ, λ⟩ and τ ′ = ⟨Θ′,Θ′′, σ′, λ′⟩
be two transformations. For the following properties X, if
τ, τ ′ ∈ X, then τ ′ ◦ τ ∈ X, under the assumption that τ
satisfies the following additional side requirements:

(i) CLOS requires CONSL+T
(ii) CLOSALV requires CONSL+T+I

(iii) KEEPG requires CONSG
(iv) KEEPALV

G requires CLOSALV + CONSL+T+I+G

Proof. For statement (iii), see Sievers and Helmert (2021).

Statement (i) Let s ∈ AliveΘ(SΘ, dom(σ′ ◦ σ)). Then
there is a policy π solving s for dom(σ′ ◦ σ) ⊆ dom(σ).
Then we also have Reach→Θ,π(s) ⊆ AliveΘ(SΘ, dom(σ)) ⊆
dom(σ) due to CLOS. Applying Proposition 1 with the as-
sumption τ ∈ CONSL+T, we conclude that πτ,s solves σ(s)
for the target states σ(dom(σ′ ◦ σ)) ⊆ dom(σ′). Thus,
σ(s) ∈ AliveΘ(SΘ′ , dom(σ′)). With τ ′ ∈ CLOS, we ob-
tain σ(s) ∈ dom(σ′) and ultimately s ∈ dom(σ′ ◦ σ).

Statement (ii) Let s ∈ AliveΘ(IΘ, dom(σ′ ◦ σ)). Then
there is a policy π with s0

π
; s that solves an initial

state s0 ∈ IΘ for dom(σ′ ◦ σ) ⊆ dom(σ). We also have
Reach→Θ,π(s0) ⊆ AliveΘ(IΘ, dom(σ)) ⊆ dom(σ) due to
τ ∈ CLOSALV. Applying Proposition 1 with the assump-
tion τ ∈ CONSL+T, we conclude that πτ,s0 solves σ(s0)
for σ(dom(σ′ ◦ σ)) ⊆ dom(σ′), and σ(s0)

πτ,s0; σ(s).
Since we have σ(s0) ∈ IΘ′ due to CONSI, ultimately
σ(s) ∈ AliveΘ(IΘ′ , dom(σ′)) ⊆ dom(σ′) by CLOSALV.

Statement (iv) Let s ∈ Alive(Θ) ∩ GΘ. Since s ∈
Alive(Θ), there is an initial state s0 ∈ IΘ and π ∈ SolsΘ(s0)
with s0

π
; s. We have Reach→Θ,π(s0) ⊆ Alive(Θ) ⊆

AliveΘ(IΘ, dom(σ)) ⊆ dom(σ) due to KEEPALV
G and

CLOSALV. Applying Proposition 1 with the assumption
τ ∈ CONSL+T, we obtain that πτ,s0 solves σ(s0) and
σ(s0)

πτ,s0; σ(s). Since σ(s0) ∈ IΘ′ by CONSI, we have
σ(s) ∈ Alive(Θ′). Finally, σ(s) ∈ GΘ′ due to CONSG.



Next, we make the connection between the transforma-
tion properties of Definition 4 and the heuristic properties
introduced in Section 3, in the context of the transforma-
tion heuristic hτ . As shown by Klößner et al. (2023), hτ

is goal-aware, consistent and safe if τ is conservative. The
new transformation properties now replace CONSS so that
hτ still remains with these properties, or the corresponding
weaker variants as defined in Definition 4.
Theorem 3. Let τ be a transformation. The transformation
heuristic hτ satisfies the following heuristic properties, if τ
satisfies the corresponding transformation properties:

(i) goal-awareness: CONSG + KEEPG
(ii) consistency: CONSL+C+T + CLOS

(iii) safety: CONSL+T+G + CLOS + KEEPG
(iv) alive-goal-awareness: CONSG + KEEPALV

G
(v) alive-cons.: CONSL+C+T + CLOSALV + KEEPALV

G
(vi) alive-safety: CONSL+T+G + CLOSALV + KEEPALV

G

Proof. Statements (i) and (iv) are straightforward. For the
other statements, let τ = ⟨Θ,Θ′, σ, λ⟩. We first argue that
(A) CLOS + KEEPG implies Solv(Θ) ⊆ dom(σ) and
(B) CLOSALV + KEEPALV

G implies Alive(Θ) ⊆ dom(σ).
Regarding (A), we have Solv(Θ) = SolvΘ(GΘ) ⊆
SolvΘ(dom(σ)) ⊆ dom(σ), where the first inclu-
sion follows from KEEPG and the second follows from
CLOS. For (B), first acknowledge that Alive(Θ) =
AliveΘ(IΘ,Alive(Θ) ∩ GΘ). We conclude Alive(Θ) ⊆
AliveΘ(IΘ, dom(σ)) ⊆ dom(σ), where the inclusions sim-
ilarly follow from KEEPALV

G and CLOSALV.

Statement (ii) Let s ∈ SΘ and ⟨s, ℓ, δ⟩ ∈ TΘ(s). We as-
sume supp(δ) ⊆ dom(σ), as otherwise the right-hand side
of the consistency inequation evaluates to ∞, making it triv-
ial. We then have s ∈ dom(σ) as well due to CLOS, since
we can reach dom(σ) with certainty from s via this tran-
sition. We also have ℓ ∈ dom(λ) due to CONSL. Due to
CONST, it follows that ⟨σ(s), λ(ℓ), σDist(δ)⟩ ∈ TΘ′(σ(s)).
The following inequality concludes the proof, where the first
inequality follows because J∗Θ′ is consistent, and the second
inequality follows by CONSC and the definition of σDist.

J∗Θ′(σ(s)) ≤ CΘ(λ(ℓ)) +
∑

t′∈SΘ′

σDist(δ)(t) · J∗Θ′(t′)

≤ CΘ(ℓ) +
∑

t′∈SΘ′

∑
t∈σ−1(t′)

δ(t) · J∗Θ′(t′)

= CΘ(ℓ) +
∑
t∈SΘ

δ(t) · J∗Θ′(σ(t))

Statement (iii) Let s ∈ Solv(Θ). Consider the transfor-
mation τ ′ = ⟨Θ|Solv(Θ),Θ

′, σ|Solv(Θ), λ⟩. Because τ ∈
CONSL+T+G and Solv(Θ) ⊆ dom(σ) by (A), it is easy
to see that τ ′ ∈ CONSS+L+T+G, which implies that hτ ′ is
safe. Since s ∈ Solv(Θ) = Solv(Θ|Solv(Θ)), we conclude
σ(s) ∈ Solv(Θ′) by safety of hτ ′ and therefore hτ (s) ̸= ∞.

Statement (v) Let ⟨s, ℓ, δ⟩ ∈ TΘ ∩ (Alive(Θ) × LΘ ×
Dist(Alive(Θ))). We conclude s ∈ dom(σ) and supp(δ) ⊆
dom(σ) using (B). The rest of the proof is analogous to (ii).

Statement (vi) Analogous to (iii), substituting Solv(Θ)
with Alive(Θ) and (A) with (B).

Finally, we discuss how the set of kept states K of a prune
transformation can be practically chosen so that either the
properties KEEPG and CLOS, or alternatively KEEPALV

G
and CLOSALV are satisfied. Since prune transformations al-
ways satisfy CONSL+T+C+I+G and are refinable, these two
categories will yield perfect or alive-perfect heuristics, re-
spectively, by Theorem 3. Furthermore, composing such
transformations with each other or with exact transforma-
tions also yields perfect or alive-perfect heuristics by Theo-
rem 2.

Theorem 4. Let F = ⟨Ai⟩i∈I be a factored ATS and let τ
be a prune transformation for Ak and K ⊆ SAk

. Then:

(i) τ ∈ CLOS ∩ KEEPG if K = Reach←(Θ(Ak))
(ii) τ ∈ CLOSALV ∩KEEPALV

G if K = Reach→(Θ(Ak))

Proof. Let Θ := Θ(
⊗

F ), Θ′ := Θ(
⊗

F ′) and Θi :=
Θ(Ai) for i ∈ I in the following. We need to consider the
TS transformation ⟨Θ,Θ′, σ, id⟩, where s ∈ dom(σ) if and
only if s(k) ∈ K.

Let K = Reach←(Θk). For KEEPG, note that
s ∈ GΘ = ×i∈I GΘi

, clearly implies s(k) ∈
GΘk

⊆ Reach←Θ (GΘk
) = K. For CLOS, let s ∈

AliveΘ(SΘ, dom(σ)). Then s must necessarily be back-
wards reachable from a state t ∈ dom(σ). Conclud-
ingly, s(k) is backwards reachable from t(k) ∈ K =
Reach←Θ (GΘ). By transitivity, s(k) ∈ Reach←Θ (GΘk

) = K.
Now, let K = Reach→(Θk). For KEEPALV

G , let s ∈
Alive(Θ) ∩GΘ. Then s must be forward reachable from an
initial state s0 ∈ IΘ =×i∈I IΘi

. Concludingly, s(k) is for-
ward reachable from s0(k) ∈ IΘk

, which shows s(k) ∈ K.
Since GΘ = ×i∈I GΘi

, we also have s(k) ∈ GΘk
. For

CLOSALV, let s ∈ AliveΘ(IΘ, dom(σ)). Then, s is for-
ward reachable from s0 ∈ IΘ. By repeating the arguments
as above, we conclude s(k) ∈ K.

Theorem 4 establishes two reachability-based prune
transformations. In practice, the backwards-reachable or
forward-reachable states of a factor are easy to compute, but
may not lead to substantial pruning depending on the topol-
ogy of the state space. We can however extend this result
to obtain stronger prune transformations at the expense of
additional computation time. Note that we can simulate a
prune transformation on factor Ak with K = Solv(Θ(Ak)),
keeping only solvable states, via a series of prune transfor-
mations with K = Reach←(Θ(Ak)). Likewise, to simu-
late K = Alive(Θ(Ak)), we can apply a prune transforma-
tion with K = Solv(Θ(Ak)), followed by a prune transfor-
mation with K = Reach→(Θ(Ak)). By compositionality
(Theorem 2) and the obvious facts CLOS ⊆ CLOSALV and
KEEPG ⊆ KEEPALV

G , we conclude the following.

Corollary 1. Let F = ⟨Ai⟩i∈I be a factored ATS and let τ
be a prune transformation for Ak and K ⊆ SAk

. Then:

(i) τ ∈ CLOS ∩ KEEPG if K = Solv(Θ(Ak))
(ii) τ ∈ CLOSALV ∩ KEEPALV

G if K = Alive(Θ(Ak))



5 Experiments
We conclude with an empirical evaluation of M&S heuris-
tics for SSPs. We implemented them in our version of Prob-
abilistic Fast Downward (Steinmetz, Hoffmann, and Buffet
2016) starting with the classical Fast Downward (Helmert
2006; Sievers 2018) implementation and adjusting it only
where necessary. The top-level algorithm takes a maximal
number of abstract states M as a parameter, as well as a
merge, shrink, prune and a label reduction strategy. Initially,
the atomic factors of the given probabilistic planning task are
constructed, with uninteresting states discarded by the prune
strategy. In each iteration of the algorithm, two factors to be
merged are selected by the merge strategy. Afterwards, la-
bel reduction is applied, and both factors are shrunk by the
shrink strategy, such that the merge results in a new factor
with at most M states. Afterwards, both factors are merged.
After each merge, the prune strategy discards uninteresting
states from the resulting factor. The process continues until
only one factor remains and has no time limit. The overall
factored transformation is maintained and the corresponding
heuristic is extracted by computing J∗ for the final factor us-
ing a variant of topological value iteration (Dai et al. 2011)
that supports zero cost actions and unsolvable states.

Regarding shrink strategies, we implemented ATS bisim-
ulation shrinking as described by Klößner et al. (2023).
To compute an ATS bisimulation, we follow the classical
Fast Downward implementation of bisimulation shrinking,
which runs a partition refinement algorithm. Initially, all
states with the same J∗ value are put into the same equiv-
alence class, with goal states being in a distinct class. To
this end, J∗ is maintained for all factors, analogous to h∗

in the classical implementation. The procedure iteratively
splits equivalence classes until the underlying relation is an
ATS bisimulation. To respect the state limit, the refinement
stops early if splitting an equivalence class would result in
more than M classes, and does not split the class at all in this
case. In that case, the shrink transformation will not be exact.
For label reduction, we implemented exact label reduction
based on (A, ϵ)-combinability. Here, we keep an ordering of
the possible effects of each label, and unify only labels with
the same amount of possible effects and for which the effect
probabilities according to this order match. Finally, we im-
plemented a prune strategy that keeps only solvable states,
and one that keeps only the alive states of a factor.

We compare SSP M&S heuristics with other heuristics in
the context of their usage in a heuristic search algorithm to
compute an optimal policy for a given stochastic shortest-
path problem. We focus on improved LAO⋆ (Hansen and
Zilberstein 2001) as the heuristic search algorithm in our
experiments, extended with a trap-elimination procedure
(Kolobov et al. 2011) to support zero-cost actions.

The experiments were run with Downward Lab (Seipp
et al. 2017) on a cluster with Intel Xeon E5–2650 v3 proces-
sors CPUs @2.30 GHz. We used a memory limit of 4GiB
and a time limit of 30 minutes for all configurations. We use
the benchmark set by Klößner, Seipp, and Steinmetz (2023),
containing 9 probabilistic PDDL domains with 20 problems
each, some of them containing traps or unsolvable states.

SSP M&S Versus Determinization-based M&S
First, we compare SSP M&S heuristics with their classical
counterpart to assess the benefit of taking the stochasticity
into account. To this end, we apply the all-outcomes deter-
minization on the given task to obtain a classical planning
problem, and then compute a classical M&S heuristic to be
used for the heuristic search. While determinization-based
heuristics are faster to construct, they discard all probabili-
ties, trading construction time for heuristic accuracy.

We ran both variants of M&S with an abstract state limit
of 50000, which turned out to be an effective limit in pre-
liminary experiments. Both variants use their respective no-
tion of exact bisimulation shrinking. We selected two differ-
ent merge stategies: The reverse level linear merge strategy
(Nissim, Hoffmann, and Helmert 2011) which orders vari-
ables closer to the root of the causal graph first and the state-
of-the-art strategy SCC-DFP from classical planning (Siev-
ers, Wehrle, and Helmert 2016). For label reduction, we use
the exact label reduction strategy based on Θ-combinability
(Sievers, Wehrle, and Helmert 2014), respectively (A, ϵ)-
combinability. To this end, we sequentially select each fac-
tor as the pivot for the combinability relation, and then col-
lapse all combinable labels. This is done until no more labels
can be combined. Finally, we consider three prune strategies:
Keeping all, only solvable and only alive states.

Table 1 shows the coverage table. Here, the superscript
M&S represents the SSP variant, while dM&S represents
the classical variant. The subscripts All, Solv and Aliv de-
note the prune strategy. SSP M&S heuristics consistently
cover more instances than their classical relatives for match-
ing algorithm configurations. Looking at the number of eval-
uated states for our best configurations in Fig. 2a, we see
that there are many problems for which our variant gener-
ates a significantly smaller search space, while the opposite
is rare. However, the SSP variant takes considerably longer
in most problems, as we can see in Fig. 2b, since the fac-
tored representation contains more information that needs to
be maintained during each transformation, and solving an
SSP is considerably more expensive than solving a classical
planning problem. Despite being about an order of magni-
tude slower in many instances of BLOCKSWORLD, the con-
struction pays off for larger instances (see Fig. 2c) and the
SSP heuristic is able to solve two additional instances in this
domain. In TRIANGLE-TIREWORLD, the trade-off similarly
becomes more favorable as the size of the problem grows,
which results in one additional solved instance.

The bottlenecks of the algorithm vary greatly across dif-
ferent configurations and search problems. The maintenance
of J∗ for all factors consistently contributes to the runtime,
taking a moderate amount of time. The time spent comput-
ing the label abstraction for label reduction is negligible in
6 domains, but becomes dominant in the domains RANDOM
and TRIANGLE-TIREWORLD, where it is the most expensive
process by far. The time spent computing ATS bisimulations
is usually on the lower end of the spectrum, the highest rel-
ative overhead for the SCC-DFP variant of hM&S

Aliv is intro-
duced in BLOCKSWORLD with 29% of the algorithm run-
time (similarly for other configurations). The actual transfor-
mations take negligible time in relation to these processes.



Linear Reverse Level SCC-DFP

Domains hM&S
Aliv hM&S

All hM&S
Solv hdM&S

Aliv hdM&S
All hdM&S

Solv hM&S
Aliv hM&S

All hM&S
Solv hdM&S

Aliv hdM&S
All hdM&S

Solv hblind hPDB
10k hCart

10k hroc hPDB
HC

BLOCKSWORLD 9 9 9 7 7 7 9 9 9 7 7 7 7 7 7 7 9
BOXWORLD 7 7 7 7 7 7 7 7 7 7 7 7 4 4 4 4 6
ELEVATORS 18 18 18 18 18 18 18 18 18 18 18 18 13 15 14 12 18
PROB-PARC-PRINTER 14 15 15 12 13 13 16 14 12 12 10 9 8 8 8 20 16
RANDOM 12 11 11 12 12 12 12 11 11 12 12 12 14 17 16 15 18
SCHEDULE 11 11 11 11 11 11 11 10 10 11 11 11 12 12 12 11 12
SYSADMIN 11 12 11 12 12 12 11 11 11 11 11 12 11 11 11 11 11
TRIANGLE-TIREWORLD 7 7 7 6 6 6 8 6 8 7 7 7 5 8 6 7 8
ZENOTRAVEL 9 9 9 8 8 8 9 9 9 8 8 8 5 8 8 7 10
Sum (180) 98 99 98 93 94 94 101 95 95 93 91 91 79 90 86 94 108

Table 1: Coverage results for all tested configurations. Each number reports the number of solved instances for the respective
domain and configuration. The highest coverage per domain is highlighted in boldface. All domains have 20 problem instances.
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Figure 2: Probabilistic hM&S
Aliv (x-axis) versus deterministic hdM&S

Aliv (y-axis), both using the SCC-DFP merge strategy.

SSP M&S Versus other SSP Abstraction Heuristics
Next, we compare our approach against previously con-
sidered SSP abstraction heuristics. We consider SSP pat-
tern database (PDB) heuristics (Klößner and Hoffmann
2021), SSP cartesian abstraction heuristics (Klößner, Seipp,
and Steinmetz 2023) and the occupation measure heuristic
hroc (Trevizan, Thiébaux, and Haslum 2017). We construct
single-abstraction PDB and cartesian abstraction heuristics
via policy-based counter-example guided abstraction refine-
ment, with a limit of 10000 states for the final abstraction.
In preliminary experiments, we observed worse results for
higher limits. We also include a state-of-the-art configura-
tion that computes the canonical PDB heuristic over mul-
tiple PDB abstractions constructed via hill-climbing search
over the space of PDB collections (hPDB

HC ), following Klößner
et al. (2022). We run hill-climbing for 180 seconds, with a
collection size limit of 10 million abstract states.

The coverage is again reported in Table 1. Overall, all
SSP M&S heuristics we have tested achieve a higher cov-
erage than their single-abstraction sibling heuristics, as well
as hroc, showing that the expressiveness of the framework
is highly beneficial. Yet, they do not quite reach the per-
formance of the state-of-the-art heuristic hPDB

HC . However, in
contrast to hPDB

HC , our configurations do not use a construc-
tion time limit to ensure that the search always starts, as the
strictness of the time limit for the M&S algorithm is hard to
enforce and may affect comparability of the individual M&S

configurations. This leads to three timeouts of our best con-
figuration in problems even solved by blind search. More-
over, hPDB

HC makes use of multiple abstractions. The combi-
nation of multiple M&S heuristics has already been consid-
ered for classical planning (Sievers et al. 2020), and achieves
a better performance overall than the single-abstraction ap-
proach. It is likely that these developments can be extended
to the SSP setting to achieve state-of-the-art performance.

6 Conclusion
In this paper, we rounded off the existing theory of SSP
M&S with a formal analysis of prune transformations. We
have established transformation properties that generalize
those considered by Sievers and Helmert (2021) in the
context of prune transformations and proved their correct-
ness using a notion of policy transformation. We propose
several prune strategies that trade off computational effort
with overall effectiveness. Our experiments show that SSP
M&S heuristics perform better than their determinization-
based variant, as well as previously considered SSP single-
abstraction heuristics. Our work leaves room for many pos-
sible continuations following the footsteps of classical plan-
ning research on this topic, e.g., an exploration of merge or
shrink strategies (Katz, Hoffmann, and Helmert 2012; Hoff-
mann, Kissmann, and Torralba 2014; Sievers, Wehrle, and
Helmert 2016), or the construction of an cost-partitioned en-
semble of M&S heuristics (Sievers et al. 2020).
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