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Abstract

In this work, we tackle a challenging combinatorial search
task within the immersive world of Minecraft, a sandbox game
renowned for its intricate environment. Specifically, we focus
on a task where an agent must craft a wooden pogo stick by
efficiently gathering resources and crafting items according
to predefined recipes. This problem is naturally modeled as
a numeric planning problem, and we show that it serves as
a formidable testbed for state-of-the-art planners. To tackle
this task effectively, we propose measures for quantifying how
often an action has been used to generate states that were
expanded during the search, and how often actions that are
applicable in generated states have been previously employed.
Based on these notions of action novelty, we develop several
domain-independent heuristic functions and integrate them
into a numeric planner. Our results showcase that using our
action novelty heuristics allows the planner to solve signifi-
cantly more problem instances and scale to larger maps than
state-of-the-art numeric planners.

Introduction
Minecraft is an extremely popular sandbox video game. Its
rich and complex environment provides many opportunities
for AI agents to learn and engage with the game. The game’s
open-ended design allows the creation of unique tasks and
challenges for the agents, providing a broad spectrum for
researchers to experiment with different AI techniques and
applications. Indeed, various Minecraft tasks have been posed
as an AI challenge (Guss et al. 2019; Goss et al. 2023).

Most AI research on Minecraft focused on either applying
Reinforcement Learning (RL) to solve the problem (Tessler
et al. 2017), learning an action model for planning (James,
Rosman, and Konidaris 2020; Benyamin et al. 2023), or mod-
eling the problem for a domain-independent planner (Roberts
et al. 2017). RL approaches require millions of interactions
with the environment to succeed, often supplemented by ex-
amples of expert solutions to the same problem.

In this work, we focus on the combinatorial search chal-
lenge of solving a specific Minecraft task, Craft Wooden
Pogo. We describe this task and show that it poses a signifi-
cant challenge to state-of-the-art domain-independent plan-
ners. Then, we propose several heuristics for solving this
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problem, which can be used within a domain-independent
planner. These heuristics are designed to guide the search
towards exploring actions that were rarely used before.

We evaluate these heuristics experimentally on a range of
problems within our Minecraft domain, showing that when
integrated with a standard domain-independent planner, our
heuristics outperform state-of-the-art planners such as Metric
FF (Hoffmann 2003) and ENHSP (Scala et al. 2017). While
our heuristics were designed for solving the Craft Wooden
Pogo task, they are domain-independent and can be used in
other domains as well.

Background
Planning problems in domains with deterministic action out-
comes and fully observable states, described with discrete
and continuous state variables, can be defined using the Plan-
ning Domain Definition Language (PDDL) (Ghallab et al.
1998), specifically, PDDL2.1 (Fox and Long 2003). PDDL2.1
is very expressive. For our purposes, we consider the follow-
ing subset of PDDL2.1. A planning domain is defined by
a tuple D = ⟨F,X,A⟩ where F is a finite set of Boolean
variables, X is a set of numeric variables, and A is a set
of actions. A state is an assignment of values to all vari-
ables in F ∪ X . Every action a ∈ A is defined by a tu-
ple ⟨name(a), pre(a), eff(a)⟩ representing the action’s name,
preconditions, and effects, respectively. Preconditions are as-
signments over the Boolean variables and conditions over the
numeric variables, specifying when the action can be applied.
The effects of an action are a set of assignments over F and
X , representing how the state changes after applying a. A
planning problem in PDDL is defined by ⟨D, s0, G⟩ where
D is a domain, and s0 is the initial state. G is the goal, rep-
resented by a set of assignments of values to a subset of the
Boolean variables and a set of conditions over the numeric
variables. A solution to a planning problem is a plan, i.e., a
sequence of actions applicable in s0 and resulting in a state
sG in which G is satisfied.

Planning problems and domains are often specified in a
lifted manner. This means a planning domain defines pa-
rameterized predicates and functions instead of Boolean and
numeric variables, and the actions are also parameterized. A
planning problem defines a set of objects that can be used
as parameters for these predicates, functions, and actions.
For example, in our Minecraft domain the location of the



Figure 1: A plan to accomplish the Craft Wooden Pogo task.

agent is a parameterized predicate (at?cell), and the problem
specifies an object for each cell in the grid.

Polycraft

Polycraft (Palucka 2017) is an interface to Minecraft, part of
the Polycraft World AI Lab (PAL) (Goss et al. 2023)1. PAL
provides an API for AI agents to interact with Minecraft’s
environment, allowing commands such as “Move”, “Mine
resources”, and “Craft item” to be sent to the game’s main
character, each with pre-defined preconditions, effects, and
costs. In addition, PAL supports symbolic observations of the
current state, making it ideal for planning algorithms, which
require a symbolic model of the environment for problem-
solving. This property differentiates Polycraft from other
Minecraft research frameworks such as MineRL (Guss et al.
2019), which provides a visual, pixel-based representation of
the game. Thus, in this work, we used PAL to interact with
the Minecraft environment.

State and Action Novelty

Lipovetzky and Geffner (2012) introduced the concept of nov-
elty in classical planning to gauge the uniqueness of a state s
by comparing its content with that of previously visited states.
Several search algorithms, such as Iterated Width and Best-
First Width-Search (Lipovetzky and Geffner 2017) use the
novelty of generated states to guide the search. More recently,
Lei et al. (2023) have explored the notion of action novelty
in the realm of generalized planning, where structured plans
(potentially containing loops and conditionals) are devised to
solve a set of problem instances within a given domain. None
of these prior works deal with numeric planning problems as
we do. Moreover, they consider either novelty w.r.t the state
variables or w.r.t the number of times an action appears in
a (generalized) plan. Our approach to novelty refers to the
number of times an action has been used to generate states
in the search space explored so far. We discuss below why
existing novelty-based searches that rely solely on the novelty
of the state variables are not expected to work well in our
domain. Our work is different from diverse planning, where
the objective is to find a set of plans that are different enough
from each other (Katz and Sohrabi 2020).

Problem Definition
This work focuses on the Craft Wooden Pogo task, as defined
in the PAL Minecraft environment (Goss et al. 2023). In
this task, the Minecraft agent, colloquially called Steve, is
located in a field comprising N ×N blocks and surrounded
by unbreakable bedrock walls. The field includes multiple
trees and a crafting table. Steve is tasked with crafting a
pogo stick, which requires performing the following actions
(illustrated in Figure 1):

1. Harvest at least three wood blocks from trees.
2. Use the wood to craft planks.
3. Use planks to craft sticks.
4. Use some of the sticks and planks to craft a tree tap
5. Place a tree tap near a tree to collect polyisoprene sacks.
6. Use the remaining sticks, planks, and polyisoprene sacks

to craft a wooden Pogo stick.

The agent observes the entire map, including details like cell
types, inventory contents (type and quantity of items), and its
position. The available actions in PAL are:

1. TP_TO - teleport from the current location to another cell
on the map.

2. BREAK- break a tree and add the resulting log to the
inventory. This can only be done when in a tree cell.

3. CRAFT_PLANK - craft 4 planks using a single log from
the inventory.

4. CRAFT_STICK - craft 4 sticks using 2 planks from the
inventory.

5. CRAFT_TREE_TAP - teleport to the crafting table, craft
a tree tap using 5 planks and 1 stick from the inventory.

6. PLACE_TREE_TAP - place the tree tap on a tree and
collect a polyisoprene sack. This action can only be done
if the inventory includes at least one tree tap and the agent
is in front of a tree.

7. CRAFT_WOODEN_POGO - teleport to the crafting
table, and craft a wooden pogo stick using a polyisoprene
sack, 2 planks, and 4 sticks from the inventory.

The Craft Wooden Pogo can be directly modeled in PDDL2.1.
For example, the preconditions of CRAFT_STICK are to
have at least 2 planks in the inventory, and the effects are to
decrease two planks and add one stick to the agent’s inventory.
Other ways to model the Craft Wooden Pogo task in PDDL
also exist.

The original task in PAL was predefined with a fixed map
size and predetermined positions for the trees, the crafting
table, and the agent. Moreover, the agent always starts with
an empty inventory. To introduce variability across problem
instances, we developed a problem generator that generates
initial states in which it randomly assigns (1) the agent’s
starting position on the map, (2) the quantity and placement
of trees, (3) the items present in the agent’s inventory, and
(4) the crafting table’s position. Thus, different sequences of
actions are needed to solve different problem instances.

1https://github.com/PolycraftWorld/PAL



Note that the TP action includes two parameters: the
current position of the agent and its target position.
Similarly, actions such as BREAK, CRAFT_TREE_TAP,
PLACE_TREE_TAP, and CRAFT_WOODEN_POGO also
require the current position of the agent. Consequently, the
total number of grounded actions is O(N4) where N repre-
sents the length and width of the map. The number of states
is also formidable since a state includes the location of the
character, the number of items of each type currently in the
inventory, and the state of the trees in the map (i.e., which
tree has been broken already). Thus, this problem presents a
significant challenge for planners due to its large action and
state spaces.

Action-Based Novelty Heuristics
Most domain-independent planners capable of solving
PDDL2.1 problems, such as ours, are based on heuristic
search. Yet, existing heuristics fail to guide the search ef-
fectively in the Craft Wooden Pogo domain on large maps,
as demonstrated experimentally in Section . Novelty-based
search algorithms (Lipovetzky and Geffner 2017) that rely
only on features of the state are also not expected to be effec-
tive in our domain, since they have no way to prefer moving
to one grid cell over the other. In this section, we propose
several heuristics that enable scaling to significantly larger
problems. These heuristics prioritize nodes in the search tree
based on the novelty of the actions that lead to them and
the novelty of the actions they enable. Importantly, all the
proposed heuristics are domain-independent, in the sense that
they do not include any Minecraft-specific information.

To define our heuristics, we associate every search node n
generated during the search with a tuple (g, h, a, s), where g
denotes the cost of reaching n from the start state, h repre-
sents the heuristic value of n, a signifies the (lifted) action
used to generate n, and s indicates the state represented by
n. We denote the set of nodes expanded during the search as
CLOSED, also known as the closed list.

The first heuristic we consider prioritizes nodes that enable
more actions to be applied. Formally, given a node n =
(g, h, a, s) this heuristic is computed as follows:

hAA(s) =
1

AA(s)

where AA(s) is the number of actions (lifted) applicable in
state s. The hAA heuristic is agnostic to CLOSED, depending
only on the state the search node represents. The other heuris-
tics analyze CLOSED and consider the following measures
of action novelty.

Definition 1 (Action Novelties). Given a node n =
(g, h, a, s) and CLOSED, we define the Explored-Action Nov-
elty (E-AN) and Applicable-Action Novelty (A-AN) as:

E-AN(n,CLOSED) = |{a = a′|(g′, h′, a′, s′) ∈ CLOSED}|

A-AN(n,CLOSED) =
1∑

a∈AA(s)
1

|{a=a′|(g′,h′,a′,s′)∈CLOSED}|

where AA(s) is the list of applicable (lifted) actions in s.

The Explored-Action Novelty of a node n reflects how
often the action leading to n was used so far to generate nodes
that were expanded during the search. The Applicable-Action
Novelty of a node n is based on the number of times the
actions that are applicable in n were used so far to generate
nodes that were expanded during the search.

Based on these definitions of Action Novelty, we introduce
the following heuristic functions.

hE-AN(n,CLOSED) = E-AN(n,CLOSED)

hA-AN(n,CLOSED) = A-AN(n,CLOSED)

where hE-AN relies on the Explored-Action Novelty and
hA-AN relies on the Applicable-Action Novelty.

Lastly, we introduce a combined heuristic that integrates
both Explored- and Applicable-based action novelty:

hEA-AN(n,CLOSED) = E-AN(n,CLOSED) + A-AN(n,CLOSED)

this heuristic aims to balance between the novelty of the
action leading to a node and the novelty of applicable actions
from that node. We explored other combinations of E-AN
and A-AN, and this sum worked best in our experiments.

Other than hAA, all proposed heuristics depend on
CLOSED. This entails: (i) processing CLOSED whenever
a node is generated, and (ii) re-computing the heuristic for
all nodes after each expansion. To address (i), we recognize
that the only relevant information from the closed list is the
frequency of each action’s application. Hence, we maintained
a counter for each action. These counters, implemented as
a dictionary of counters, indicate the number of times each
action has been applied up to the current state of the search.
To mitigate (ii), we implemented a lazy evaluation of the
heuristic values similar to the Lazy A* algorithm (Karpas
et al. 2018). When evaluating a node for expansion, we recal-
culate its heuristic value. If the recalculated heuristic value is
greater than its previous value, we delay the expansion of the
node, re-prioritizing it based on the updated value.

Experimental Results
We conducted experiments on Craft Wooden Pogo problems
with maps of size 6×6, 10×10, 15×15, 30×30, and 45×45.
For every map size, we created 50 problems, which differ in
the initial content of the inventory and the number of trees in
the map. Specifically, the number of items in the inventory
initially ranged from zero to eight for all items except for
the polyisoprene sack and the Pogo stick, which were always
zero (otherwise the problem is not challenging). We set the
number of trees on each map to range from zero to (map
size)/3. The machines used for the experiments consist of
two Intel Xeon E5-2620 processors and 48GB of RAM. Each
algorithm ran with a time limit of 30 min.

We implemented our heuristics into NYX planner (Pi-
otrowski and Perez 2024), a versatile, Python-based, domain-
independent planner. We chose Nyx because it enables easy
integration of new heuristics into the search process. As a
baseline, we run experiments with two blind searches, namely
Depth-First Search (DFS) and Breadth-First Search (BFS).
Then, we run experiments with Greedy Best-First Search
(GBFS) using each of our newly introduced heuristics. We



also experimented with using A* instead of GBFS, but prelim-
inary results showed GBFS worked better. This is reasonable
as we do not aim to find optimal solutions and align with
our approach, as our heuristic differs from the conventional
measure of distance to the goal; instead, we prioritize based
on the novelty score of the state.

We also experimented with two state-of-the-art numeric
planners: Metric-FF (Hoffmann 2003) and ENHSP (Scala
et al. 2016). Metric-FF was tested with three primary con-
figurations: prioritizing cost minimization using variants of
the A* algorithm, employing BFS with heuristic-based ap-
proaches, or combining Enforced Hill Climbing (EHC) with
BFS (Standard-FF). Among these, the configuration that
yielded the most promising results was Standard-FF.

ENHSP configurations encompassed various combinations
of heuristics and search algorithms, including Greedy Best
First Search, A*, and numeric heuristics like MRP, hadd,
AIBR, hmax, and landmark heuristics. Our experiments re-
vealed that utilizing A* with the hmax heuristic outperformed
other configurations. We report only the best configuration
for each baseline.

Results and Trends

Map Size 6× 6 10× 10 15× 15 30× 30 45× 45

NYXBFS 50 (14) 29 (67) 9 (219) - -
NYXDFS 50 (17) 50 (35) 44 (159) - -
NYXAA 50 (14) 50 (45) 24 (141) - -
NYXE-AN 45 (120) 7 (205) - - -
NYXA-AN 50 (18) 37 (457) 5 (906) - -
NYXEA-AN 50 (5) 50 (5) 50 (10) 49 (73) 50 (748)

ENHSP 50 (1) 50 (32) 45 (170) 13 (1434) -
MetricFF 50 (0) 50 (1) 50 (5) - -

Table 1: Number of solved problems and runtime in seconds
(appears in brackets) for different map sizes and algorithms.

Table 1 presents the number of problems solved and the
average runtime (in brackets) by the different algorithms for
maps of different sizes. Cells with “-” indicate the desig-
nated algorithm could not solve any problems for this map
size. Consider first the results of Nyx when using BFS, DFS,
and our four heuristics (the first 6 lines in Table 1). Nei-
ther hA-AN nor hE-AN exhibited improvements over the blind
search variants, solving overall fewer problems. However,
when combined into hEA-AN, they collectively achieve the
best results among all Nyx configurations. Furthermore, Nyx
equipped with hEA-AN outperforms ENHSP across most of
the map sizes. When comparing Nyx with hEA-AN to Metric-
FF, we observe similar performance on the three smallest
maps. However, upon scaling to larger maps, Metric-FF fails
to solve any problems due to the substantial memory re-
quired for heuristic construction, which exceeds our system’s
capabilities. Overall, Nyx equipped with hEA-AN exhibited
superior performance, demonstrating significantly improved
scalability.

Table 2 shows the average number of nodes expanded for
Nyx with BFS, DFS, and GBFS with all the heuristics we
proposed. The results show that, as expected, the number of

Map Size 6× 6 10× 10 15× 15 30× 30 45× 45

NYXBFS 118,665 2,130,514 4,231,802 - -
NYXDFS 65,857 348,076 1,821,880 - -
NYXAA 17,247 838,806 2,057,879 - -
NYXE-AN 72,100 257,726 - - -
NYXA-AN 19,763 670,296 387,674 - -
NYXEA-AN 443 1,086 2,525 10,212 23,367

Table 2: Avg. number of expanded states for different map
sizes and Nyx configurations.

nodes expanded by Nyx with hEA-AN is significantly smaller
than all other cases. Interestingly, using the components of
hEA-AN individually, i.e., using either hE-AN or hA-AN, yields
unimpressive results. For example, for 10× 10 maps using
hE-AN and hA-AN required expanding on average 257,726 and
670,296 nodes, respectively, while using their combination
(hEA-AN) resulted in solving more problems and expanded on
average only 1,086 nodes.

Related Works
The most widely adopted method for playing Minecraft is
the Hierarchical Deep Reinforcement Learning Network (H-
DRLN) (Tessler et al. 2017). This approach enables the agent
to continuously learn multiple policies and adapt to new
challenges within the game. The H-DRLN leverages a deep
neural network to model the policy and value functions, re-
sulting in high effectiveness across a variety of Minecraft
tasks such as navigation, mining, and combat. Despite suc-
cess, this Reinforcement Learning (RL) approach requires
extensive training and environment interaction, while not
guaranteeing feasible plans, making it less suitable for our
context.

In the realm of planning, Wichlacz et al. (2019) used PDDL
modeling to solve complex construction tasks in Minecraft.
They modeled house-construction tasks as classical and as
Hierarchical Task Network (HTN) (Georgievski and Aiello
2015) planning problems. They observed that even simple
tasks present difficulties to current planners as the size of the
world increases. Learning HTN domains from observations
is an open problem. Importantly, there are key distinctions be-
tween the work of Wichlacz, Torralba, and Hoffmann (2019)
and our own. First, they address different tasks (house con-
struction vs crafting a pogo stick). Moreover, Wichlacz et al.’s
work focused on problem modeling, whereas our research is
primarily concerned with tackling the combinatorial search
challenges inherent in problem-solving and scalability.

Conclusions and Future Work
In this work, we introduced the crafting of a wooden
pogo stick in Minecraft as a planning problem, demon-
strating its complexity for numeric planners. Moreover,
we proposed domain-independent action-novelty-based ap-
proaches that notably enhance planners’ efficacy in solv-
ing this task, enabling scaling to large maps with numer-
ous objects. The action-novelty heuristics we proposed are
domain-independent, in the sense that they do not include any



Minecraft-specific element. We performed a limited evalua-
tion of Nyx with hEA-AN, the most effective heuristic for the
Craft Wooden Pogo problem, on problems from two domains
from the International Planning Competition (IPC) for nu-
meric planning (McDermott 2000): Rover and Satellite. The
results were disappointing: Nyx with hEA-AN was only able
to solve 1 and 34 problems in Rovers and Satellites, respec-
tively, within a 30-minute time limit. By contrast, ENHSP
solved 3 and 0 problems from these domains, and Metric-FF
solved 11 and 162 problems from these domains.

We conjecture that this is because our action-novelty ap-
proach lacks any goal-oriented element. Moreover, our heuris-
tics are not expected to work well in scenarios where plans
involve frequent repetition of the same action or in environ-
ments with a vast action space, most of which are irrelevant.
An exciting direction for future research is to integrate the
action-novelty scheme with goal-oriented heuristics and state
novelty schemes (Lipovetzky and Geffner 2017) to achieve
a better balance between exploring new actions, novelty of
states, and progress towards the goal.
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