
Expected Runtime Comparisons Between
Breadth-First Search and Constant-Depth Restarting Random Walks

Daniel Platnick and Richard Valenzano
Toronto Metropolitan University, Toronto, Canada

Vector Institute for Artificial Intelligence, Toronto, Canada
{daniel.platnick, rick.valenzano}@torontomu.ca

Abstract

When greedy search algorithms encounter a local minima
or plateau, the search typically devolves into a breadth-first
search (BrFS), or a local search technique is used in an at-
tempt to find a way out. In this work, we formally analyze the
performance of BrFS and constant-depth restarting random
walks (RRW) — two methods often used for finding exits
to a plateau/local minima — to better understand when each
is best suited. In particular, we formally derive the expected
runtime for BrFS in the case of a uniformly distributed set
of goals at a given goal depth. We then prove RRW will be
faster than BrFS on trees if there are enough goals at that goal
depth. We refer to this threshold as the crossover point. Our
bound shows that the crossover point grows linearly with the
branching factor of the tree, the goal depth, and the error in
the random walk depth, while the size of the tree grows expo-
nentially in branching factor and goal depth. Finally, we dis-
cuss the practical implications and applicability of this bound.

1 Introduction
Greedy algorithms like Greedy Best First Search (GBFS)
(Doran and Michie 1966) and Enhanced Hill-Climbing
(EHC) (Hoffmann 2001) have been shown to be very effec-
tive at solving graph search and planning problems. How-
ever, when using a flawed heuristic function, the search per-
formed by these algorithms often devolves into breadth-first
search (BrFS). This is explicitly by design in the case of
EHC, which performs a sequence of BrFS instances, each
in search of a new lower heuristic value. In GBFS, it of-
ten happens as a natural consequence of plateaus, where the
heuristic function does not provide enough information to
distinguish between states, and so the search is blind.

The restarting random walk (RRW) approach (Nakhost
and Müller 2009; Xie, Müller, and Holte 2014, 2015) is an
alternative to BrFS for escaping local minima. This method
generates a sequence of random walks until one is found that
exits the local minima. It is low memory, but does not have
the strong termination guarantees that the systematic search
of BrFS leads to.

The main objective of this work is to further our under-
standing of BrFS and RRW to better understand when each
is best for dealing with local minima and plateaus, when

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

these are encountered as part of other search algorithms.
As an example of why this is needed, we have performed
preliminary experiments testing the performance of an EHC
algorithm which replaces BrFS with RRWs. These exper-
iments were performed using Pyperplan (Alkhazraji et al.
2020). In particular, we ran each method 10 times per prob-
lem, each time with a 10 minute time limit on an M3 Mac-
book with 16 GB of RAM1. The results show that different
methods for escaping local minima seem best suited for dif-
ferent domains. Using RRWs in EHC instead of BrFS in-
creases coverage in some domains, for example, from 60%
to 95% in TPP, and 81% to 91% in Transport. In other do-
mains, we see that using RRW decreases performance, such
as the drop in coverage from 93% to 76% in Scanalyzer and
100% to 84% in BlocksWorld.

In this paper, we focus on formally analyzing BrFS and
RRW to better understand where each approach is best
suited. Our main result shows that the expected runtime of
RRW on directed trees is less than BrFS if the number of
goals (ie. exit states of the local minima) is high enough. In-
terestingly, the number of goals at this crossover point is lin-
ear in the goal depth and branching factor, meaning it grows
much slower than the overall size of the tree itself. A conse-
quence of this is that the density of the number of goals (ie.
the percentage of goals to total states) needed for RRW to
outperform BrFS actually decreases as the depth of the goals
increases. We then conclude by discussing the practical im-
plications of this result as it relates to when each algorithm
is most appropriate.

2 Preliminaries
In this section, we introduce the terminology used and
briefly summarize the algorithms covered in this work.

A graph search task is defined by the tuple S =
⟨G, vI , VG⟩, where G = ⟨V,E⟩ is a graph with vertices
V and edges E, vI ∈ V is the start or initial vertex and
VG ⊆ V is the goal set. The objective is to find a path of
vertices ⟨v0, ..., vk⟩ where v0 = vI , vk ∈ VG , and for ev-
ery 0 ≤ i < k, ⟨vi, vi+1⟩ ∈ E. Given our specific focus

1While Pyperplan is not a state-of-the-art planner, we consider
it sufficient for demonstrating that the competing methods of using
BrFS or RRW for escaping local minima each are best suited for
different problems.



algorithms, we ignore edge costs in this work.
For any v ∈ V , we refer to the number of edges in the

shortest path to v as the level of v. For example, vI has a
level of 0, any vertex that can be reached from vI by one
edge has a level of 1, etc. The goal level d∗ is defined as the
minimum level of any vertex in VG .

The search algorithms we focus on perform two main op-
erations on vertices. The first is a goal test (ie. if v is in
VG). The second is a successor generation step. This means
finding and generating the successor set of v, defined as
{v′|⟨v, v′⟩ ∈ E}. When both of these operations are per-
formed on a vertex, we say it has been expanded. As will
be described below, for both our focus algorithms, the num-
ber of goal tests will be exactly 1 larger than the number of
successor generation steps. Thus, we can measure runtime
equally well using the count of the number of times either
operation is performed. We therefore focus on the number
of goal tests in the remainder of this work.

Note that while our formal analysis is given in terms of
finding a goal in a given graph search task, the analysis
equally applies to the case of escaping from a single local
minima in a given state-space. In such a situation, the goal
test involves simply checking if the heuristic value of a given
state (ie. vertex) is less than the heuristic value of the initial
state. Thus, the statements below also provide expected run-
time results for the time needed to escape from local minima
of different sizes.

Breadth-First Search (BrFS)
For BrFS, we assume the reader’s familiarity with the use
of open and closed lists in best-first search algorithms like
A∗. At every iteration, BrFS will select one of the vertices
v in the open list with the lowest level and perform a goal
test. If the test succeeds, the search immediately terminates.
If the test does not succeed, then the successors of v are
generated, those that have been generated for the first time
are added to the open list, and v is moved to the closed list.
This process then repeats until a goal test succeeds or the
open list is emptied. Thus, when we refer to BrFS, we are
considering an algorithm equivalent to uniform-cost search
(Felner 2011) — or A∗ with a heuristic that always returns
0 — on a unit-cost graph.

By definition, BrFS expands all vertices in a level before
proceeding to the next level (assuming no goal is found),
and BrFS does not perform a goal test on any vertex with
a level larger than d∗. Since every failed goal test is imme-
diately followed by a successor generation step and BrFS
terminates after the test succeeds once, the number of goal
tests is exactly one more than the number of successor gen-
eration steps. Moreover, the number of goal tests will depend
on how many vertices in the goal level are expanded before
a goal vertex, which will depend entirely on how the goal
vertices are distributed at that level and tiebreaking. Thus,
the number of goal tests made by BrFS on a search task S is
a random variable, which we denote by B(S).

Constant-Depth Restarting Random Walks (RRW)
The constant-depth RRW algorithm is shown in Algorithm
1. It generates a series of random paths called random walks,

Algorithm 1: The Constant-Depth RRW Algorithm
Input: task S = ⟨G = ⟨V,E⟩, vI , VG⟩, max depth t

1: if vI ∈ VG then
2: return path ⟨vI⟩
3: while true do
4: P ← ⟨vI⟩, v ← vI , d← 0
5: while d < t do
6: v ← vertex sampled from {v′|⟨v, v′⟩ ∈ E}
7: Append v to P , d+ = 1
8: if v ∈ VG then
9: return P

each starting from vI (lines 4 to 9). At every step of the
walk, the algorithm terminates if a goal is found (line 8).
Otherwise, the successor of the last vertex is generated, and
it is added to the path. The algorithm restarts to the initial
vertex when the maximum depth is reached (lines 5 and 4).

Notice that the goal test is performed on vI exactly once
(line 1). Doing otherwise is clearly unnecessary. This ap-
proach also ensures that the algorithm performs exactly one
more goal test than successor generation steps, since every
successor generation step (line 6) is immediately followed
by a goal test (line 8).

Clearly, if the maximum depth t is less than the goal level,
then constant-depth RRW will not terminate. Thus, we as-
sume a reasonable “guess” of a lower bound on the correct
depth can be made. That is, we assume that t = ed∗ where
e ≥ 1 and ed∗ is an non-negative integer. We refer to e as the
depth error, and denote the random variable for the number
of goal tests by a constant-depth RRW with depth error e on
search task S as Re(S). Note that for simplicity, we assume
that every vertex with a level less than ed∗ has at least one
successor (ie. a random walk never terminates early).

3 General Expected Runtime Analysis
In this section, we characterize the expected runtime of
BrFS and RRW in general settings. The first result is for
BrFS when the goal vertices are uniformly distributed at the
goal level. This theorem will equivalently hold if random
tiebreaking is used to order the vertices for expansion.
Theorem 3.1. If S has NO unique vertices with a level
less than d∗, and g ≥ 1 goal vertices uniformly distributed
amongst the Nd∗ ≥ g unique vertices at the goal level, then

E[B(S)] = NO + (Nd∗ + 1)/(g + 1)

Proof. Let X be the number of goal tests that BrFS performs
on vertices at level d∗. Since BrFS does not test any vertices
with a level deeper than d∗, E[B(S)] = E[NO + X] =
NO + E[X] since NO is a constant.

Note, because the goal vertices are uniformly distributed,
E[X] is equivalent to the expected number of selections
needed when randomly picking vertices from the goal level
without replacement, until one of the g vertices is picked.
Let vi be any one of the (Nd∗ − g) non-goal vertices at level
d∗, and let Zi be an indicator random variable for the event
that vi is picked before any one of the g goal vertices. There-
fore E[X] = E[Z1 + ... + ZNd∗−g] + 1, since E[X] is the



number of non-goal vertices tested plus one for the final goal
vertex tested.

Now notice that P[Zi] = 1/(g+1) since there are (g+1)!
ways of ordering the (g+1) vertices in the set containing vi
and the g goal vertices, and g! of these orderings start with
vi. Importantly, this probability does not change when some
other non-goal vertex vj ̸= vi is picked. Therefore, the Zi’s
are independent and so

E[X] = 1 + E[
Nd∗−g∑
i=1

Zi] = 1 +

Nd∗−g∑
i=1

E[Zi] (1)

= 1 + (Nd∗ − g)/(g + 1) = (Nd∗ + 1)/(g + 1)
(2)

Line 2 holds since the Zi are indicator variables and so
E[Zi] = P[Zi], and since we are summing over (Nd∗−g) of
them with the same expectation. Adding this to NO yields
the desired result.

We now consider the runtime of constant depth RRW. For
this result, we assume that each random walk has an inde-
pendent probability of 0 ≤ s ≤ 1 of reaching a goal vertex.
We call s the success probability.
Theorem 3.2. If S is a search task with goal level d∗ such
that s > 0 and all g goal vertices are at level d∗, then

E[Re(S)] =
ed∗

s
− (e− 1)d∗ + 1

Proof. Let Y be the random variable for the number of ran-
dom walks it takes to find a goal (ie. the goal is first seen on
random walk Y ). Notice that

E[Re(S)] = E[ed∗(Y − 1) + d∗ + 1] (3)
= ed∗E[Y ]− (e− 1)d∗ + 1 (4)

Line 3 holds because the first Y random walks all perform
ed∗ goal tests before restarting and exactly d∗ tests on the
last random walk (when it finds a goal at depth d∗). The
added 1 comes from the single goal test of vI .

Since every random walk has an independent and iden-
tically distributed success probability of s, Y follows the
well-known geometric distribution. Thus, E[Y ] = 1/s. Sub-
stituting this into Line 4 gives the desired result.

4 Comparing BrFS and RRW on Trees
We now consider the performance of BrFS and RRW on di-
rected trees with a constant branching factor. We begin by
using Theorems 3.1 and 3.2 to find more specific expres-
sions for the expected number of goal tests in this case.
Corollary 4.1. If ST is a search task on a directed tree with
constant branching factor b ≥ 2 and g ≥ 1 goals uniformly
distributed at goal level d∗, then

E[B(ST )] = (bd
∗
− 1)/(b− 1) + (bd

∗
+ 1)/(g + 1)

This follows since there are bℓ vertices at every level ℓ ≥ 0
of such a tree. Thus, we can apply Theorem 3.1 using Nd∗ =
bd

∗
and NO = b0+b1+ ...bd

∗−1 = (bd
∗−1)/(b−1), which

follows from the formula for the sum of a geometric series.
Next, we consider RRW on such a tree:

Corollary 4.2. Let ST be a search task on a directed tree
with constant branching factor b ≥ 2 and g ≥ 1 goals all at
the goal level d∗. If RRW samples edges uniformly at each
step, then

E[Re(ST )] =
ed∗bd

∗

g
− (e− 1)d∗ + 1

This follows immediately from Theorem 3.2 since the
success probability is g/bd

∗
because all vertices at the goal

level are equally likely to be visited on any random walk.
Figure 1a uses these corollaries to show the expected

number of goal tests for BrFS and RRW on a tree with
b = 4, d∗ = 6, and different numbers of goals. BrFS per-
forms significantly fewer goal tests for a small number of
goals, but RRW can overtake BrFS quite quickly depending
on the error value (note that there are 4096 vertices at the
goal level). We refer to the number of goals at which RRW
matches or surpasses BrFS as the crossover point. The next
theorem shows that the crossover point is linear in each of
the branching factor, goal depth, and depth error. The theo-
rem only covers the case where the d∗ ≥ 2 and ed∗ > 2.
This requires that either the goal level d∗ > 2 or the random
walk depth error is e > 1. We discuss the remaining cases
after the theorem.
Theorem 4.1. Let ST be a search task on a directed tree
with constant branching factor b ≥ 2, d∗ ≥ 2, and g ≥
1 goals all uniformly distributed at the goal level. If RRW
samples edges uniformly at each step and ed∗ > 2, then
E[B(ST )] ≥ E[R(ST )] if either the following holds:

1. g = bd
∗

2. g < bd
∗

and g ≥ (ed∗ − 1)(b− 1) + 1

Proof. Let x denote E[B(ST )]−E[R(ST )]. By Corollaries
4.1 and 4.2

x =
bd

∗ − 1

b− 1
+

bd
∗
+ 1

g + 1
− ed∗bd

∗

g
+ (e− 1)d∗ − 1 (5)

We will now show x ≥ 0 in case 1, when g = bd
∗
. Notice

that this simplifies line 5 to x = (bd
∗ − 1)/(b − 1) − d∗.

Since b ≥ 2 and d∗ ≥ 2, x is clearly positive here.
Let us now consider Case 2. For readability, we let x =

y + z, where z = (e − 1)d∗ − 1, and y is the remaining
terms in line 5. Since x ≥ 0 if and only if Cx ≥ 0 for some
positive constant C, we can show the required statement by
showing x′ ≥ 0 where x′ = cx and c = (b − 1)(g + 1)g.
This is done to avoid the denominators. Similarly, we define
y′ = cy and z′ = cz and derive the following:

y′ = (bd
∗
− 1)(g + 1)g + (bd

∗
+ 1)(b− 1)g (6)

− ed∗bd
∗
(b− 1)(g + 1)

= bd
∗
[(g + 1)g + (b− 1)g − ed∗(b− 1)(g + 1)] + v

(7)

where v = (b−1)g− (g+1)g. Here, we have just separated
and factored out the terms with bd

∗
in them. Now notice the

lower bound in Case 2 is equivalent to ed(b−1) ≤ g+b+2.
By substituting this into Line 7, we get



(a) Expected Goal Tests (b) Goal Level vs. Goal Crossover (c) Goal Level vs. Goal Density Crossover

Figure 1: Comparing BrFS and RRW with different depth errors (e) on a directed tree with a branching factor of 4. Figure 1a
shows the expected goal tests when the goal depth is 6 for different numbers of goals. Figure 1b shows how the crossover point
changes at different goal levels. The crossover point as computed empirically is shown as a dashed line, while the bound from
Theorem 4.1 is a solid line. Figure 1c shows how the goal density crossover changes with the goal level.

y′ ≥ bd
∗
[(g + 1)g + (b− 1)g − (g + b+ 2)(g + 1)] + v

(8)

≥ bd
∗
(g − b− 2) + v ≥ bd

∗
(b− 1) + v (9)

Line 8 merely involves expanding and cancelling out terms.
The last line holds by the assumption that ed∗−1 ≥ 3 which,
alongside the lower bound in Case 2 implies that g ≥ 2b−1.

y′ + z′ ≥ bd
∗
(b− 1) + (b− 1)g − (g + 1)g (10)

+ (b− 1)(g + 1)g[(e− 1)d∗ − 1]

≥ bd
∗
(b− 1) + g[(b− 1)(g + 1)(e− 1)d∗ − 1]

(11)

≥ bd
∗
(b− 1)− g (12)

≥ bd
∗
(b− 1)− bd

∗
(13)

Line 11 simply involves expanding and cancelling out terms.
Line 12 holds because (b−1)(g+1)(e−1) ≥ 0 since b ≥ 2,
g ≥ 1, and e ≥ 1. The last line holds since g < bd

∗
.

Since b ≥ 2, line 13 implies that x′ = y′ + z′ ≥ 0, which
in turn implies x ≥ 0, which completes the proof.

Let us now consider cases not handled by Theorem 4.1.
When d∗ = 1, it can be shown that E[B(ST )] < E[R(ST )]
for any g ≤ bd

∗
= b, and the two expectations are exactly

equal when g = b. If d∗ = 2 and e = 1, the situation is al-
most identical to that in Theorem 4.1 except the lower bound
on g in Case 2 is exactly one higher than in Theorem 4.1.
Namely, the bound is g ≥ (ed∗ − 1)(b− 1) + 2.

Figure 1b shows how the goal crossover changes with
goal level and depth error. The bound from Theorem 4.1
is shown as a solid line and the actual crossover points —
computed based on Corollaries 4.1 and 4.2 — are shown as
dashed lines. The figure clearly depicts that the crossover
increases linearly with the goal level and depth error as sug-
gested by Theorem 4.1. The figure also shows that the bound
is quite accurate, as it only slightly over-estimates the true
crossover for small goal levels.

Finally, we note that while the crossover increases lin-
early with the goal level, the density of goals needed at the
goal level in order for RRW to outperform BrFS actually
decreases with d∗. For example, Figure 1c shows the den-
sity crossover, which we define as the crossover point (de-
termined using the lower bound from Theorem 4.1) divided
by the number of goals at the goal level (namely bd

∗
). The

figure clearly shows that the required percentage of goals for
RRW to be faster actually decreases with the goal level.

5 Discussion and Future Work
We have shown that BrFS performs fewer goal tests when
the number of goals is very small, but RRW is faster in ex-
pectation as the number of goals grows even slightly. How-
ever, RRW may outperform this result in practice for sev-
eral reasons. First, RRW can benefit from goals at levels be-
tween d∗ and ed∗ as these will increase the success proba-
bility and thereby decrease expected runtime. BrFS cannot
benefit from such goals in any way.

Second, while we have focused on the number of goal
tests performed, the amount of time needed per goal test dif-
fers between the algorithms. This is because BrFS has the
additional overhead of maintaining the open and closed list
(ie. duplicate checking, adding and removing from the open
list, etc.). BrFS will also generate all children of a given ver-
tex, not just a single one as RRW does. While this overhead
may just be constant time, that may often be enough to fur-
ther decrease the crossover point when expected runtime and
not number of goal tests are considered. The open and closed
lists can also have enormous memory requirements making
BrFS impractical in certain situations.

In contrast, the duplicate detection performed by open and
closed lists means BrFS is much better equipped to handle
graphs with cycles or transpositions. In practice, this effec-
tively means RRW is working on a larger search tree. For
example, even if the search task is an undirected tree with
constant branching factor b, the duplicate detection of BrFS
means it will be able to prune the tree to one with a branch-
ing factor b− 1. While this particular case is easy to handle
with RRW, this algorithm will struggle relative to BrFS in
a similar way to iterative deepening methods (Korf 1985) if



the transpositions are more complex than that. Along with
our results in Theorem 4.1, we therefore expect RRW to
have the advantage in large combinatorial state-spaces with
a low number of transpositions and an increasing amount of
goals, and BrFS to better handle cases with very few goals
or many transpositions. It may therefore be important to de-
velop hybrid BrFS and RRW methods — analogous to A* +
IDA* (Bu and Korf 2019) — that get some of the advantages
of both. We leave such an investigation as future work.

We now review some related work and identify several
avenues of future work. Local best-first searches have been
empirically shown to be useful for escaping local minima
and plateaus in planning search systems (Xie, Müller, and
Holte 2015). Nakhost and Müller (2014) formally analyze
the expected runtime of a single random walk and restart-
ing random walks on classes of graphs characterized by the
probability of getting closer or farther from a goal on ev-
ery step. Their model for restarting random walks assumed
a constant restart probability at every step instead of a con-
stant restart depth, and they also do not compare to BrFS.
Extending our results to their graph classes is left as future
work. Everitt and Hutter (2015) performed a similar anal-
ysis to ours when comparing BrFS and depth-first search
(DFS) on bounded depth-trees. They characterized the ex-
pected runtime of BrFS, but their formulation considers the
case where every vertex at the goal level is equally likely to
be a goal (see Proposition 3). Our use of a fixed number of
goals g considerably simplifies the resulting expression for
the expected runtime, and we also compare against RRW in-
stead of DFS, which is not generally suitable for escaping
local minima/plateaus.

Finally, non-constant restart policies have been intro-
duced that do not rely on an initial guess of the goal depth.
These methods dynamically adjust the restart depth over
time while still maintaining strong theoretical guarantees.
For example, the general policy of Luby, Sinclair, and Zuck-
erman (1993) has an expected runtime of O(T log T ) on any
search task S, where T is the runtime of the best possible
restart policy for T . As on directed trees, the best possible
policy is exactly the constant-depth one with e = 1, we hope
to extend our analysis to compare BrFS to this general pol-
icy. We leave this as future work.

References
Alkhazraji, Y.; Frorath, M.; Grützner, M.; Helmert, M.;
Liebetraut, T.; Mattmüller, R.; Ortlieb, M.; Seipp, J.; Sprin-
genberg, T.; Stahl, P.; and Wülfing, J. 2020. Pyperplan.
https://doi.org/10.5281/zenodo.3700819.
Bu, Z.; and Korf, R. E. 2019. A*+IDA*: A Simple Hy-
brid Search Algorithm. In Kraus, S., ed., Proceedings of
the Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2019, Macao, China, August 10-16,
2019, 1206–1212. ijcai.org.
Doran, J. E.; and Michie, D. 1966. Experiments with the
Graph Traverser Program. Proceedings of the Royal Soci-
ety of London A: Mathematical, Physical and Engineering
Sciences, 294(1437): 235–259.
Everitt, T.; and Hutter, M. 2015. Analytical Results on

the BFS vs. DFS Algorithm Selection Problem. Part I: Tree
Search. In Pfahringer, B.; and Renz, J., eds., AI 2015: Ad-
vances in Artificial Intelligence - 28th Australasian Joint
Conference, Canberra, ACT, Australia, November 30 - De-
cember 4, 2015, Proceedings, volume 9457 of Lecture Notes
in Computer Science, 157–165. Springer.
Felner, A. 2011. Position Paper: Dijkstra’s Algorithm ver-
sus Uniform Cost Search or a Case Against Dijkstra’s Algo-
rithm. In Borrajo, D.; Likhachev, M.; and López, C. L., eds.,
Proceedings of the Fourth Annual Symposium on Combina-
torial Search, SOCS 2011, Castell de Cardona, Barcelona,
Spain, July 15.16, 2011, 47–51. AAAI Press.
Hoffmann, J. 2001. FF: The Fast-Forward Planning System.
AI Magazine, 22(3): 57.
Korf, R. E. 1985. Depth-First Iterative-Deepening: An Op-
timal Admissible Tree Search. Artificial Intelligence, 27(1):
97–109.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Op-
timal Speedup of Las Vegas Algorithms. In Second Is-
rael Symposium on Theory of Computing Systems, ISTCS
1993, Natanya, Israel, June 7-9, 1993, Proceedings, 128–
133. IEEE Computer Society.
Nakhost, H.; and Müller, M. 2009. Monte-Carlo Exploration
for Deterministic Planning. In Boutilier, C., ed., IJCAI 2009,
Proceedings of the 21st International Joint Conference on
Artificial Intelligence, Pasadena, California, USA, July 11-
17, 2009, 1766–1771.
Nakhost, H.; and Müller, M. 2014. Towards a theory of
random walk planning: Regress factors, fair homogeneous
graphs and extensions. AI Communications, 27(4): 329–344.
Xie, F.; Müller, M.; and Holte, R. 2014. Adding Local Ex-
ploration to Greedy Best-First Search in Satisficing Plan-
ning. In Brodley, C. E.; and Stone, P., eds., Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intel-
ligence, July 27 -31, 2014, Québec City, Québec, Canada,
2388–2394. AAAI Press.
Xie, F.; Müller, M.; and Holte, R. 2015. Understand-
ing and Improving Local Exploration for GBFS. In Braf-
man, R. I.; Domshlak, C.; Haslum, P.; and Zilberstein, S.,
eds., Proceedings of the Twenty-Fifth International Confer-
ence on Automated Planning and Scheduling, ICAPS 2015,
Jerusalem, Israel, June 7-11, 2015, 244–248. AAAI Press.


